M68ICS05POM/D

February 1998

M68ICS05P
HC705P IN-CIRCUIT SIMULATOR
OPERATOR’'S MANUAL

© MOTOROLA, Inc., 1998; All Rights Reserved

Important Noticeto Users

While every effort has been made to ensure the accuracy of al information in this document,
Motorola assumes no liability to any party for any loss or damage caused by errors or omissions
or by statements of any kind in this document, its updates, supplements, or special editions,
whether such errors are omissions or statements resulting from negligence, accident, or any other
cause. Motorola further assumes no liability arising out of the application or use of any
information, product, or system described herein, nor any liability for incidental or consequential
damages arising from the use of this document. Motorola disclaims al warranties regarding the
information contained herein, whether expressed, implied, or statutory, including implied
warranties of merchantability or fitness for a particular purpose. Motorola makes no
representation that the interconnection of products in the manner described herein will not
infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this
description.

Trademarks

This document includes these trademarks:

Motorola and the Motorola logo are registered trademarks of MotorolaInc.
IBM isaregistered trademark of IBM Corporation.

Windows is aregistered trademark of Microsoft Corporation.

CASMO5W, ICS05PW, and WinIDE software are 0 P & E Microcomputer Systems, Inc, 1996;
all rights reserved.

Motorolalnc. isan Equal Opportunity /Affirmative Action Employer.

@ MOTOROLA CONTENTS

CONTENTS

CHAPTER 1 INTRODUCTION

00 O Y= V= .S 1-1

1.2 TOOIKIt COMPONENTS.ccuiiuiieiitiriieiiee ettt e et b e b bt e e e e e b sneenenre s 1-1

1.3 Hardware and Software reqUIrEMENLS..........c.eceeriiieesiere e st ese e e seesae e e enneeneens 1-2

R oo L = 1 - SRR 1-2

15 SPECITICAIIONS ..ooieeeiice ettt e s r et e e s r e e teenaesneeteeneesreennenrn 1-3

1.6 ADOUL ThiS USEIS MANUALcouuiiiiiiiiiiii e e e et e e e e e 1-3
1.7 QUICK Start INSIIUCLIONS........ceviiiiie et e et e e e e e e et e e e e e eesban s emon 1-4....

CHAPTER 2 POD INSTALLATION

2.1 OVEBIVIEW oottt ettt e e e e e e e e e e e e e e —rr ittt ittt e e aaa s 1. 2-
2.2 Installing the MBBICSOS5P POd..........uuiiiiiiiiiiiiiieee e 2-1

CHAPTER 3 SOFTWARE INSTALLATION

TNt R O 1V =T V1 PP PPPPPRRN, 1. 3-

3.2 The ICSO5PW Software COMPONENTS........ccceiiiiiiiiieeieiiiiese aaaaes 3-1
3.2.1 THe WINIDE EQITOF ..euiiiiiiiiiiiee ettt e et e s e e e e e e e e e e e eeees 3-1
3.2.2 CASMOBSW ...ttt et e e e e e e e e e e e e e a s 1. 3-
3.2.3 ICSOBPW i —————aaaaaaaas 2 3

3.3 Installing the ICSO5PW SOftWAIEuuuuiiiiiiiieeeeeeeeeeeeeeerr e e e e e e e e e s 3-2
3.3.1 INSTAllAtioN STEPS ...ttt a s 3-2........
3.3.2 Starting the ICSO5PW SOftWAIE........coiiiiiiie e 3-3
ICTRC T0C I (33 @01 411 4 18] 0 o%= 11 o] o SRS PRR 3-3

CHAPTER 4 THE WinIDE USER INTERFACE

o R O V=T VT PP 1. 4-

4.2 The Windows Integrated Development ENvironment................oovviiiiiiiiiiie e 4-1

4.3 WINIDE MaIN WINAOWiiiiiiieeiiieeeieetiiiiees ettt e s s e e e e e e e e e e e e eeeeeesseannnnn s 4-2
4.3.1 Main WINAOW FUNCLIONSuuiiiiiiiiiiiiiiieie et e e e e e e e e e e e e e e e e e e s s s aannnes 4-2
4.3.2 Main WiNndoW COMPONENTEScoiiiiieieeiiiiiiiiiiiiiiiit et e e e e e e e e e e e e e e e e s annanbeeneeeees 4-2

M68ICS05POM/D iii

CONTENTS @ MOTOROLA

CHAPTER 4 THE WinIDE USER INTERFACE (continued)

R €T 1 1] g0 [= = OSSR 4-3
4.4.1 Prerequisitesfor Starting the WIinIDE EditOr..........ccooiieiiiinineeceeeeeee e 4-3
4.4.2 Starting the WINIDE EQITOrcccoieiiiieece et 4-3
4.4.3 Opening SOUMCE FIIESooiiiiiieieeeee e nne s 4-4
4.4.4 Navigating in the WIiNIDE EItOr..........cccooveiiieeiecieceseee e 4-4
445 USING MEBIKENSottt r bbb e e e e snenne s 4-5

4.5 Command-Ling Para@mELerS.........ccooueiiiiiriiisiesisesisee ettt st sbe e sne e 4-6

4.6 WINIDE TOOIDEAcceiiiiiei ettt besnee e 4-7

A7 WINIDE MENUSooitiiiiiiiiieie ettt st sttt e e e et b be b e beene e e e e ens 4-9

4.8 WINIDE Fil@ OPLIONS.......oiiiuiiiiieieiie sttt e e b b e enes 4-11
A.8.1 NEW FIE oottt e 4-11
A.8.2 OPENFIIE e 4-12
A.8.3 SAVEFIIE e 4-12
A.8.4 SAVE B AS . . ettt re e nnes 4-13
A.8.5 ClOSEB IR ottt 4-13
L G 1 01 | = SRS 4-13
I A 01005 (1 o TSRO 4-14
G 8 T = S 4-14

4.9 WINIDE EQit OPLiONS.....ccuiiieitieiicie et eee st te e sneeste e e s e enseeneesneenseeneeans 4-14
e I R U 1 o o S 4-14
4.9.2 REOD et b e b enes 4-15
e G T O 1 | S 4-15
R o oY R PRURRRIN 4-16
e T == = S 4-16
4.9.6 DEEIE ettt 4-16
e B A = 1= B | P 4-16

4.10 WInIDE ENVironment OPLiONS.........cccueiieieeiereeieseeseesteseeseessesseesseesessessseessessesssesseens 4-16
4.10.1 OPEN PIrOJECEccueiieeeeeieie sttt ettt sttt a e e b bt e e et e s e b nreene e 4-18
(O s YN o o] = o PR USSS 4-18
4.10.3 SAVE PIOJECE AS . . . ottt b e bt e e n e n e 4-18
4.10.4 ClOSEINEW PrOJECL......cciuieieieieiteeieceese et sttt te e re et e e te e sreene s e e nneennas 4-19
4.10.5 Setup ENVIFONMENTo 4-19

4.10.5.1 The General ENVIironmMent Tabcocviiriririnieerere e 4-20
4.10.5.2 General EAITOr TaDccooiviiininirieee s 4-22
4.10.5.3 Assembler/Compiler Tabhccccceiieiiee e 4-23
4.10.5.4 Executable 1 (Debugger) and Executable 2 (Programmer) Tab..........ccc.c...... 4-28
4.10.6 SEIUP FONES... oottt s e s be e s ssr e e sa e e s nnneesbaeeeas 4-29

iv M68ICS05POM/D

@ MOTOROLA CONTENTS

CHAPTER 4 THE WinIDE USER INTERFACE (continued)

4.11 WINIDE Sarch OPLIONS........cccueiieiiieeesiieiieseesieestesee e saesseessesseesseessesneesseensesseessesnsesseesns 4-30
g 00 T o S 4-31
O (= o/ = o PSSR 4-32
g e T T o I = S 4-32
g O o (o T = PP RSR 4-33

4.12 WINIDE WINAOW OpPLIONS......c.ceieiiiiriisiesieeieeeee e sre s e s ss s e b s sneenenes 4-33
O R O = oo [USSP 4-34
2 I | = S 4-34
o G B N 4 =0 1[0 [0l] 3PP RTRRRRIN 4-35
2 Y T 010 174> L PSR 4-35
4125 SPIT ettt nrens 4-36

CHAPTER S ASSEMBLER INTERFACE

TN R © V= V= OSSP 51
5.2 CASMO5W Assembler USER INEEITACEcoveiiiieiiieieeseeie e 5-2
5.2.1 Passing Command Line Parameters to the Assembler in Windows 3.Xcc......... 5-3
5.2.2 Passing Command Line Parameters to the Assembler in Windows 95...................... 5-4
5.3 ASSEMDIEr Para8mMELENS......c.coieiiiesesii ettt 5-4
5.4 ASSEMDIEr OULPULSovitiitieiieiee ettt e e nr b bbb be e e s 5-5
541 ODJECE FIIES...cuiiiiieiiieiee ettt bbbt 5-5
SN V= o 1 1 = 5-5
L T I 1 1T o 1 =SS 5-6
5.4.4 Filesfrom Other ASSEMDIENS.......cooiiiiiieieeiesee e e 5-6
5.5 ASSEMDIEr OPLIONS......c.eiiieiiecie ettt e et e s e re e ae s e e teeresnnesseennesneensens 5-6
551 OperandS and CONSANTS........ccueiverieririereniesieeeeeee e sb e e e ans 5-7
5.5.2 COMIMENTS ...ttt b e s e e e ne e s me e s s e e sme e e s e e sneeenneennneenns 5-8
5.6 ASSEMDIEN DIFECLIVESc.viiiieieieieeie sttt sttt be et saeesbeeeesse e reeneesneens 5-8
B.8.1 BASE ettt bbb enes 5-8
5.6.2 CYCIE AUUEN ...t 5-8
5.6.3 Conditional ASSEMDIYcci i e 5-10
oI S oo 1 o L= R 5-10
5.6.5 IMBCIO oo e n e e ne e nean 5-11
5.7 LiSNG DITECHIVES ..ottt b b e 5-12
571 LIiSING FlES...uiiiiicecee ettt 5-12
B5.7.2 LADEIS e et besre e e e 5-14

M68ICS05POM/D %

CONTENTS @ MOTOROLA

CHAPTER S ASSEMBLER INTERFACE (continued)

R T == 0 (o (o T @ o< = 1o S 5-15
5.81 EQUELE (EQU)oiiiiiriirieieiesieie sttt ettt 5-15
5.8.2 Form Constant Byte (FCB)cceiieiiiie ettt see et e e e 5-16
5.8.3 FOrm Double Byte (FDB)......ccccoiiirinieriesierieeecieeesie sttt 5-16
RS I A © g o [= (=1 (O] 5 {C) PSS 5-16
5.85 Reserve Memory BYte (RMB)........ooiiiiirieieeciesie e 5-16

5.9 ASSEMDIEr EFTOr MESSAgES.ccivieieiieesieeieseesteeitesee s e eaessee s e etesseesseenseaneesseesesseesseenseans 5-17

5.10 Using filesfrom Other ASSEMDIErS.o 5-19

CHAPTERG6 CS05PW SIMULATOR USER INTERFACE

B.1 OVEIVIEW ittt et sr et e et e e st e s be e besaeesaeeneeeneesbeetesneesreenteaneans 6-1
6.2 ThelCSO5PW IN-CirCUit SIMUIGLOTccueriirierieriesiesieseeee e 6-1
6.2.1 1CSOSPW SIMUlation SPEEAcoeiieiiieieriesie st 6-1
6.2.2 System Requirements for Running the ICSO5PW............ccoevveieveenece e 6-2
6.2.3 File TypeSand FOrMELScccooeiiririiesii et 6-2
6.3 SLArtiNG ICSOSPWV ...t bbbttt e s 6-5
6.4 ICSOSPW WINUOWScviiiiiiieiiieiietiesieeiesieesteestesseesieseesseesseensesseessesnsesseessessessesssesnsnsseenes 6-7
6.5 COUEWINUOWScoviiiiiiiiitisiieeeee ettt st be sttt e b et e st st e b benne e e enes 6-7
6.5.1 To Display the Code Windows ShortCut MENUS............ccevvrerieenineieneneeesre e 6-8
6.5.2 Code Window Shortcut Menu FUNCLIONS..........cccooirineieninineee s 6-8
6.5.3 Code Window Keyboard COMMAaNGS...........cccoureerierierererenieseseseeeesee e 6-9
6.6 VariaDIES WINUOWccuiiiiiieieie ettt nee e 6-10
6.6.1 Displayingthe Variables ShortCut Menu ... 6-10
6.6.2 Variables Window Shortcut Menu OpPLtioNS..........ccccveeereeiieieeseeie e eee e sreenens 6-10
6.6.3 Variable Window Keyboard COmMmands.............ccooererirerieeiienienesese s 6-11
A \Y = 0T AV T oo SRR 6-12
6.8 SLAUSWINUOW ..ottt e bt et e st e saeeeesneesneeneeas 6-13
6.9 CPU WINUOW .ottt sttt bbbttt e et e saennenne s 6-15
6.9.1 Changing RegISIEr VAIUES..........cccoiiiiiiiiirieeeeeie st 6-15
6.9.2 CPU Window Keyboard COmMmMaNGSccccveieiieiieiesee e csiesee s esie e sseene s 6-16
6.10 ChIpWINUOW .ottt b et e e b b snennenne e 6-17
6.10.1 Reading Valuesinthe Chip WindOWcccovvieiicieciesecce et 6-17
6.10.2 Chip Window Keyboard COmMMEaNGSccoereririeenienieriesiesesieseseeeesee e 6-17
B.11 CYCIESWINUOW ..ottt sttt e e s et e e e sseeseeseesseensesneesneenseaneennens 6-18
6.12 SEACK WINUOW ...ttt sttt sr et e sbe et esaeesaeeneesneennens 6-18
6.12.1 INLEITUPL SEACKcveeieceieceee ettt e esneeneeneens 6-18
6.12.2 SUDIOULINE SEACKeoieeiiieieiecie e et s 6-19

vi M68ICS05POM/D

@ MOTOROLA CONTENTS

CHAPTER G |CSO5PW SIMULATOR USER INTERFACE (continued)

6.13 TraCe WINAOW ...viieiieiiiieieie ettt bttt bbbt e s et e et 6-19
6.14 BreakpoiNt WINGOWcoiiieieieieiesie st sb e e sne e 6-20
6.14.1 Adding @aBreakpointccccceiieiieieiiere et nne e 6-20
6.14.2 Editing @ Breakpoint...........ccccieieiirereseee e 6-21
6.14.3 Deleting aBreakpoiNt............ccviieiieiicieese st ne 6-21
6.14.4 Removing All Breakpoints..........cccooiriiiiininieieieesiesie s 6-22
6.15 Programmer WINGOWS..........ccveueiiereeieseesieseesieesseseesseessesseesseessessessseesessesssesssessesssesees 6-22
6.16 RegiSter BIOCK WINUOWcceiiiiiieiiiesiesie sttt 6-23
6.17 Entering Debugging CommaNGSccccveiiriiereeiie e eesee e eae e sse e e sre e sreesneeneas 6-24
6.18 [CSO5PW TOOIDEScoieieieieeie ettt s re e 6-24
6.19 CSOSPW IMENUS......coueiuiiieiisie sttt sttt sttt be ettt st bbb sae st e e e e e e e nbesaesbenrean 6-26
6.20 FlEOPLONS oot r e b nne e 6-27
6.20.1 LOAH ST Fl@ ..ottt 6-28
6.20.2 REIOAH LaSt S19.......cciiieieieiiieieeee ettt et sre e esaensestesnenrennens 6-28
0T T = = Y = o TS 6-29
6.20.4 RECOII MACIO....ciiuiiieieiieie sttt sttt s re e te st e s seeteeneesreesesneesneennens 6-29
ORS00 1Y/ = o o T PSSO 6-30
6.20.6 OPEN LOGIIIE......ooiieiiiseeeee et 6-30
O @ [0S S o | = 6-31
B.20.8 EXIT oot r et e et e tenresreeneeneenes 6-31
6.21 [CSO5PW EXECULE OPLIONS.....cctiiiiiieeiieeiesteestestestee e eeeste e tesseesseeseeseesseensesseesseeeesneensens 6-32
B.21.1 RESEL PrOCESSONeiiieeitiieiie sttt ettt ettt st e be e ae e se e st e ebeesneeeseesaseebeeenneenneas 6-32
B.21.2 SLED oot bbbttt et b b renneas 6-32
6.21.3 MUITIPIE SEED ...t bbb sne e 6-33
B.21.4 GO e E bbbttt et e e b benne e e 6-33
T2 TS (o] o TSSOSO 6-33
6.21.6 Repeat COMMENGccouiiieiieie ettt st e e sre e e reenteeneesneene e 6-33
6.22 1CSO5PW WiNAOW OPIONSeiueiieeieeeeieniesieste st se e ssesne s ese e ssesresnesnenneas 6-34
6.22.1 OPEN WINAOWS......coiieiiieiteeite e steesieseesteesteeeesreeste s e e sseesesseesseesessaesseesesneesseensesneens 6-34
6.22.2 Change COlOrS.......ouiiiiieiieieree e bbb n e r e b sne e 6-35
6.22.3 REIOB0 DESKLOP ..ottt sttt sttt sttt sttt sbe e 6-35
6.22.4 SAVE DESKIOP ... eeuvetirteitieteeit ettt bbb n e nenn e nenre 6-35

CHAPTER 7 | CSO5PW DEBUGGING COMMAND SET

8 R O V= 4 1 = USRS 7-1
7.2 ICSO5PW COMMANG SYNLBXuveiveerieirieeesieeireeeesseesaeseesseessessessseessesseesseessesssssesssesssssseenes 7-2
7.3 COomMMAENG-SEL SUMIMEIYoiviieiiiiiiieieiesie ettt sb e b e e nenresn e reeeeenes 7-3
7.3.1 ATQUMENT TYPES ... tiiiiiieiiiieesites sttt s it e st st e st e st e s ssb e e s nba e e snseessbseesbnessneeenanees 7-3
7.3.2 COMMENG SUMIMEBIYcuviiitiriieiieieiete ettt ee s e s b sae s ese e e s e s e b e snesresaeenes 7-4
7.4 Command DESCIIPLIONS. ...c.ecuiiieiteeie e sttt s et e s te s e sreese s e e saeeteeneesreenseens 7-9

M68ICS05POM/D Vi

CONTENTS @ MOTOROLA

CHAPTER 8 EXAMPLE PROJECT

ST @< oV Y SRR 8-1
8.2 Setting Up aSampPle PrOJECT.......coviiiieriiiiesi et 81
8.21 Set Upthe ENVIFONMENLccieieiieciecie ettt sneenneennas 8-1
8.2.2 Createthe SOUICE FIES......cc.ooiiieeeee e 8-2
8.2.3 ASSEMDIEtNE PrOJECL........ecieceee ettt 8-3

APPENDIX A S RECORD INFORMATION

AL OVEIVIEBW ettt et e s e e be e s ae e e be s sase e beesaseebeesasesbeessseebeesaseebeesnseenseess A-1
A.2 S RECOI CONLENLoeiiiiiecciie ettt et et e et e e etre e e ebreesbeeesebeeesbeeesbeeesabeeesabesessseeesnsenns A-1
R S oo {0 I Y/ 0= SR A-2
A4 S RECOI CrEALIONccccuveeiitieecctiee ettt e ettt e ettt e et e e ete e e ebeeeesaeesssseesesseesesseesasseessseesseeesnsenns A-3
A5 S RECOIA EXAMPIE.... .ottt st e e nreennennas A-3
A5 1 TheSOHEAEr RECOIMoooiiuiiieiieectee ettt et ebe e e eae e e eareeeenreeens A-4
A.5.2 TheFIrst SLRECOIM.......cccoiiiieiieceectee ettt e sare e reesaneenbeeeanes A-5
A.5.3 TheSO Termination RECOIccoiiuiiiiiieeeeree ettt eree e e ree e sreeen A-6
A 5.4 ASCIH ChalraClerS......ccciieiieeiiree et stee st eee e ste e sibe e sree e e sbeesbeesbeesareesreesabeesreesanes A-6

APPENDIX B SUPPORT INFORMATION

B.1 OVEIVIBIW ettt bbb bbbt bbb ne e B-1
B.2 Functiona Description Of The Kit........c.ooiiiiiiiiiinieeeeeese e B-1
B.2.1 TREEMUIBLOTcuiitiiieiiieiieieie ettt sttt bbb ens B-1
B.2.2 PrOgramiMiNgc..coeiereeeeeeeeieiesie st sttt ss et e e b e s s e e e e s e sne b e enis B-2
B.3 Troubleshooting The QUICK Startccooieiiiieii e B-2
B.4 Troubleshooting The Programimer ... B-4
B.5 Schematic Diagram ANd PartS LIStcccvecviieiiiie et B-5
GLOSSARY
INDEX

viii M68ICS05POM/D

@ MOTOROLA CONTENTS

FIGURES
1-1. WinIDE Environment Settings Dialog EXEL Tab.......cccooiiiiiiiiinieeeeeeeesese e 1-5
1-2. WinIDE Environment Settings Dialog Assembler/Compiler Tab.......ccoevvvceveececeececeee 1-5
1-3. The WinIDE Debugger Toolbar BULION...........coiiriiieieieiesieresieseeee e 1-6
1-4. The WinIDE Assemble/Compile File Toolbar BUttON............ccccvieerecieveereece e 1-6
3-1. TE PiCK DEVICE DIAIOJcuviiitiiiieiieieee ettt sr b 3-4
4-1. WIinIDE WindowW COMPONENTS.........ccieeiieeieesreesieeiesseesseseesseessesessseessessssssessssssssssesssesssssses 4-1
4-2. WINIDE SEAIUS Bccueiiiiiiiitieie ettt sttt te s e ssesee e e sbeeneesseessesnsesseensens 4-3
G T o] S 0 (oW 1Y = o T USRS 4-5
-4, MaAIKEr SUD-MIBINUcoviiiiiiieiiieie sttt st esseesaeentesseesbeeneesseenseeneesseensensens 4-6
4-5. WINIDE TOOIDE ..ottt bbb 4-7
Table4-1. WInIDE TooIDar BULLONS..........ociiiiiieieeie et 4-8
Z-B. FIlE IMEBNU ...ttt bbbttt e et et bbb b ne e 4-11
4-7. OPEN FIEDIAIOQY. ... ettt et e b e b bt nn s 4-12
T 1018 D TF= o S 4-13
e T o 1 1Y = T S 4-14
4-10. ENVIFONMENE MENU ...ttt st sttt st bbbttt nes 4-17
4-11. Specify project file to OpEN DIAl0F........ccererereeieieere e 4-18
4-12. Specify project file to SAVE DIalOg........ccveiiieeiicie e 4-18
4-13. Environment Settings Dialog General Environment Tab.........ccooeeieninenineneseeeeeee 4-20
4-14. Environment Settings Dialog: General Editor Tab........cccccvveeveice e, 4-22
4-15. Environment Settings Dialog: Assembler/Compiler Tabooovveeeieeicicncnc e 4-24
(G = o gl o0 7= I USSR 4-27
4-17. Environment Settings Dialog: EXE 1 (Debugger) and EXE 2 (Programmer) Tabs......... 4-28
4-18. SEtUP FONES DIBIOQ.....cueeiieeiieieitieie ettt e s sre e seesreeeesneesneenne e 4-29
eSS o 01V = o T SR 4-30
O T oo [= o PSSR 4-31
4-21. REPIACE DIBIOJ ... eeeterieeiieieee ettt ettt e e bbbt 4-32
4-22. GO To Line NUMBEr DialOg.......ccveiueiierieeiiesiese e see e sttt st sne e 4-33
4-23. TRE WINUOW MENU ..ottt sttt st e bt esreeseeneenneens 4-33
4-24. WinIDE with Subordinate Windows Castaded.............coevererenininieeienese s 4-34
4-25. WinIDE with Subordinate Windows Tiled..........ccoceeiiirnenieneeseee e 4-34
4-26. WinIDE with One Source Window Displayed and Remaining Windows Minimized.....4-35
4-27. The WinIDE Editor with Subordinate Windows Minimized............cccooevvvienieeneneenienne 4-35
4-28. SPlit POINEr @NA Bcoiiiieeciecie ettt nae e neenneenne e 4-36

M68ICS05POM/D iX

CONTENTS @ MOTOROLA

FIGURES (continued)
5-1. WinIDE with CASMO5W Assembler Window Displayed...........cccoevereninenieeieenenenenee 5-2
5-2. Windows 95 Program Item Property Sheet (Shortcut Property for CASMO5W.EXE) 5-3
5-3. CASMO5W for Windows Assembler Parameters...........ccceveeveeneeneennneesiesseeseesesnee e seens 5-4
6-1. Can’t Contact BOArMialOg.........ccueieiierieiiesieseeieseesreeste e seestesee e esseseesseesesneesseenseens 6-6
6-2. The ICSO5PW Windows Default POSItIONS.........ccooiiieiieienie et 6-7
6-3. Code Window in Disassembly Mode with Breakpoint Toggled..........cccoovvvieivciiiicieennne 6-8
6-4. Code Window SOMCUL IMENUc.eoiieiiiiieieie et ee e 6-8
6-5. Window Base AdAreSBHalog.......ccoveveiierieeiisie e ste st e st te st e e sre e sneesreenne e 6-9
6-6. Variables Window with SNOrCUt MENU..........cooeiiiiieiiceceeeeee e 6-10
6-7. Add VariableDialOgccceiieriieieiieri ettt sreene e nne s 6-10
6-8. Memory Window with SNOMCUE MENUccooiiiiiiieeee e 6-12
6-9. SEALUS WINUOW ...ttt bbbttt b et nnenne s 6-13
6-10. Results of Entering the LF Command in the Status Windowcccoeeveieieeieninneennns 6-14
6-11. Specify Output LOG FilaDialOgcccceceeieriieieiieiie e seeseseesreeseesee s seesseensesneennens 6-14
6-12. The Logfile Already EXISIBAESSAGE.......cceririiieieieriererte e 6-14
6-13. CPU Window With ShOrtCUt MENUccoviiiiirinieee e e 6-15
6-14. The Change CCRDIAIOQc.uiereeierieriese sttt sn e e b sresne e e 6-16
LG T o o VAT oo o1 SRS 6-17
6-16. CYCIES WINUOW ...ttt bbb bt b ene e 6-18
B-17. SEACK WINUOW ...ttt sttt b bbb nre e nnean 6-18
B-18. TraCe WINGUOWceiueiitieieieiesieeiesiee e sttt eesre e te e e s seentesseesbeentesseesseensesseenaensens 6-19
6-19. Breakpoint Window with ShOrtCut MenU............cccvvieiieii e 6-20
6-20. Edit BreakpoinDIalogccceeeeieieriesesiese et 6-20
6-21. PROGO5P9 Programmer PiCK WINAOWccocoiiiereciesiese et see et sae e 6-22
6-22. Programmer FilES WINUOWcceoieiiiierenenieeeeeeee et 6-22
6-23. The Register BIOCK WINAOW..........coiieiiiie et ns 6-23
6-24. The WinReg Window with Typical Register File Information............ccoceerenerienenieenns 6-23
6-25. WINIDE TOOIDENoouiiiiiiiieeeee s 6-24
B-26. FIIE MENU ...ttt ettt e s se e be et e sbe e be et e sneensesneennens 6-27
6-27. Specify S19 File t0 LOAMIEIOQccoveiueeieiieeie et eesees et e et nae e nneas 6-28
6-28. Specify MACRO File to0 EXECUDBAIOJceereeieiirieriiniesie e 6-29
6-29. Specify MACRO File to RECORIAIOQJccveiueieeiieieseete e 6-29
6-30. Specify Output LOG FilDialOg.......ccceviiieieiiiieieiesiese s 6-30
6-31. Logfile Already EXIStEIalOgccciveiieieiierieie e e st nne s 6-30
6-32. A SamMpPle OULPUL LOG FIlE ..o 6-31
6-33. ICSO5PW EXECULE MEBNU ..ottt et snenre s 6-32

X M68ICS05POM/D

@ MOTOROLA CONTENTS

FIGURES (continued)
6-34. WINUOW IMBNU ..ottt sttt ae s e st te s e beentesseesbeeneesneenseeneenaens 6-34
6-35. Change WANAOW COlOrS DIi@lOgcceeirieieiieiiiiieseesie e sieese e st esee et ee e sneennesneenneas 6-35
7-1. Assembly Window Showing ASM Commandccceeoeerereneneneneseseeeesee e 7-11
7-2. PICK DEVICE DIAlOQ. ... e cueeiteeiisiesie e see st ete st te st e s e e e e sseesessaessaensesneesneeseaneensens 7-26
7-3. MOdify MemOry DI@lOgccueruerieieieiieriesie sttt e 7-59
7-4. PROGO5P Programmer PICK WINAOWcvoiiiieiicrie e ee s 7-67
8-1. CASMOBW WINUOW......cueiiiiiiiieieieiieieiesiesie e stestesse s eeaessessessessessesseeseeseessessessessessessessenses 8-4
B-1. M68ICS05P Schematic Diagram (Sheet 1 Of 2)......ccceeeiiiiniieseseeee e B-6
B-2. M68ICS05P Schematic Diagram (Sheet 2 Of 2)........coveieiiiiiieeeeeeeee e B-7
TABLES
1-1. MBBICSO5P SPECITICALIONS.ccueeiieiiiesie ettt st sbe s 1-3
3-1. The ICSO5PW SOftWare€ FlES.......coouiiiieieeee e 33
4-2. WinIDE Menus and OptioNS SUMIMAIYccceieerieriiesieeseeseeseesessesseesseesessseessessssssesssesnes 4-9
4-2. WinIDE Menus and Options Summary (CONtINUEd)c.coererererereeieieeesee s 4-10
5-1. Change Base PrefiXes/SUFTIXESoii ettt 57
5-2. Assembler Directives and Conditional Assembler DIreCtives..........ccocvvcveceeicieienencnenine 5-9
5-3. LIStiNG DITECHIVES.....cvicie ettt ettt st e e e r e neesneeneeneesnenneennn 5-12
5-4. LiStiNG FIE FTEIAS ..ot 5-13
5-5. Pseudo Operations Allowed by the CASMOBWcceiieieiieseesie e 5-15
5-6. ASSEMDIEr ErTOr MESSAOES.cuvitetereenterieeieee ettt sttt sttt e e e et s b b sne b e ene e e e 5-17
5-6. Assembler Error Messages (CONtINUEH)evveerieeieiiee et 5-18
6-1. Base PrefixeS and SUFTIXES........uiiiiieieesie et 6-11
6-2. ICSOSPW TOOIDEr BUITONScviiieiieieiesie sttt 6-25
6-3. ICSOSPW Menus and OpPtioNS SUMMIBIYcoeiieieeeireneeniesiesesiese e e ssesneas 6-26
6-3. ICS05PW Menus and Options Summary (CONtiNUE)cccveeueieerueeiieseenesieeseesee e 6-27
-1, ATQUMENT TYPES.... ittt st r e e r e sn e nne e nreennnis 7-3
7-2. ICSOSPW COMMANA OVEIVIBIW ...ttt st ss bbb enes 7-4
7-2. ICSO5PW Command Overview (CONtINUEM)..........ooererirerieieiesiesie s 7-5
7-2. ICS05PW Command Overview (CONtINUE).........c.ccveieeiieieesieiieseeseese e seesee e s sne e 7-6
7-2. ICSO5PW Command Overview (CONtINUEM)..........ooererirereeieieese e 7-7
7-2. ICS05PW Command Overview (CONtINUE).........c.ccveieeiieieesieiieseeseese e e see e see e 7-8
7-2. ICSO5PW Command Overview (CONtINUEM)..........ooererirerieieiesiesie s 7-9

M68ICS05POM/D Xi

CONTENTS @ MOTOROLA

TABLES (continued)
7-3. PROGRAM COMMEANGS......cccuvieitiieitieeeteeeeteeesteeesateeesaaeesssseesssesessesesseeesssesssssesssssessasees 7-68
A-L ST RECOMA FIEIUS.uvictie ettt et e e e ere e sae e s be e saeeebeesaeesabeesreenseenns A-1
A-2. SRECOrd FIEIA CONtENES.......eiiiiiecciee ettt e sbe e e sbe e e sbe e e sabeeesareeesnreeens A-2
S S o oo (0 I 8/ 0= A-3
A-4. SO HEAOE! RECOIMoeeeevieecitiee ettt ettt ettt e et e e et e e s ebe e e sbeeesbeeesabeeessbessanressnneesns A-4
A-5. SLHEAAEr RECOIMc.veecvie ettt ere et te e sae e s be e saeesbeesaeesnseesreesreens A-5
A-6. SO HEAAEr RECOIU ..ottt e s etre e e eae e e e ebe e e s beeesbeeesabeeeeneenns A-6
B-1. MBBICSO5P PaltS LIStcciueeiiiieiiiiiitiectie et stee et ctee e saeeebe e sreesbeesaaesbeesneesnbeesnnesnreesnneas B-8
B-1. MG8ICSO5P Parts List (CONtINUE)ooiriiirieieieeeesies s B-9

Xii M68ICS05POM/D

@ MOTOROLA INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

This chapter is an overview of the M68ICS05P In-Circuit Simulator Kit components and a Quick
Start guide to setting up a development project.

The Motorola M68ICS05P In-Circuit Simulator Kit is a development toolkit for designers who
develop and debug target systems that incorporate M68HC705P6/P9 Microcontroller Unit
(MCU) devices. The toolkit contains al of the hardware and software needed to develop and
simulate source code for and program the Motorola M68HC705P microcontrollers.

Together, the M68ICS05P printed circuit board (pod) and the ICSO5PW software form a
complete ssmulator and non-real-time 1/0O emulator for a M68HC705P6/P9 device. When you
connect the pod to your PC and your target hardware, you can use the actual inputs and outputs
of the target system during simulation of code.

Use the M68ICS05P toolkit with any IBM-Windows 3.x or Windows 95-based computer with a
serial port.

1.2 TOOLKIT COMPONENTS

The complete M68ICSO5P toolkit contains:
* Hardware:
— The M68ICS05P in-circuit simulator pod.
- A sample M68HC705P9 EEPROM MCU.
— A 28-pin DIP target emulation cable.

* Windows-optimized software components, collectively referred to as ICSO5PW
software, and consisting of:

— WINIDE.EXE, the integrated development environment (IDE) software
interface to your target system for editing and performing software or in-
circuit simulation.

- CASMO5W.EXE, the CASM05W command-line cross-assembler.

M68ICS05POM/D 1-1

INTRODUCTION @ MOTOROLA

- ICSO5PW.EXE, the in-circuit/standalone simulator software for the
M68ICS05P target MCU.

Documentation:
— The M68ICS05P In-Circuit Smulator User’s Manual.

— Technica literature, including Understanding Small Microcontrollers, an
introductory guide to understanding and using Motorola MC68HCO05 family
microcontrollers.

1.3 HARDWARE AND SOFTWARE REQUIREMENTS

The ICSO5PW software requires this minimum hardware and software configuration:

An IBM-compatible host computer running Windows 3.x or Windows 95 operating
system.

Approximately 640 Kb of memory (RAM) and 2 Mb free drive space.
A serial port for communications between the M68ICS05P and the host computer.

1.4 TOOLKIT FEATURES

The M68ICS05P toolkit is alow-cost development system that supports in-circuit simulation. Its
featuresinclude:

1-2

Software and in-circuit simulation of M68HC705P6/P9 M CUs

Ability to program MC68HC705P6 and MC68HC705P9 EPROM microcontrollers
Communication with the host PC viaa seria port

ICSO05PW software, including editor, assembler, and assembly source-level simulator
64 instruction breakpoints

SCRIPT command for automatic execution of a sequence of commands

Emulation cable for connection to the target system

On-screen, context-sensitive Windows Help

CHIPINFO command supplies M68ICS05P pod memory-map, vector, register, and
pin-out information

Software responds to both mouse and keyboard controls

M68ICS05POM/D

@ MOTOROLA

INTRODUCTION

1.5 SPECIFICATIONS

Table 1-1 summarizes the M68ICS05P hardware specifications.

Table 1-1. M68I CSO5P Specifications

Characteristic

Specification

Temperature:
Operating
Storage

0°to 40° C
-40° to +85° C

Relative humidity

Power requirement

0 to 95% (non-condensing)

+9Vdc @ 0.1 A (maximum)
(from included wall transformer)

Dimensions

3.5x3.2in. (89 x 81 mm)

1.6 ABOUT THIS USER'S MANUAL

Thismanual covers the M68ICS05P software, hardware, and reference information as follows:
Chapter 2 0 Pod Installation
Chapter 30 Loading and Initializing the ICSO5PW Software
Chapter 4 0 WinIDE User Interface
Chapter 50 ICS05PW In-Circuit Simulator User Interface
Chapter 6 0 CASMO5W Assembler Interface
Chapter 7 0 1CS05PW Debugging Command Set
Chapter 8 0 Example Project
Appendix A O S-Record Information
Appendix B 0 M68ICS05P Support Information
Glossary
I ndex

M68ICS05POM/D 1-3

INTRODUCTION @ MOTOROLA

NOTE

The procedural instructions in this user's manual assume that you
are familiar with the Windows interface and selection procedures.

Figures in this manual show ICSO5PW windows and dialog boxes
as they appear in the Windows 95 environment.

1.7 QUICK START INSTRUCTIONS

The following instructions summarize the hardware and software installation instructions of
Chapters 2 and 3.

If you are experienced in installing Motorola or other development tools, follow these steps.

1-4

Install the ICSO5PW software: follow the instructions on the diskette label to run
the ICSO5PW Setup program. During instalation, follow the instructions in the
installation wizard: choose the Typical Install option to install the files to your hard
disk, or choose the Compact Install option to copy the files onto another diskette.

Connect the M68ICS05P pod: connect the M68ICSO5P pod to the host PC'’s serial
port using the included cable. Plug the cable into the pod connector P2.

Supply power to the M68ICSO5P pod: connect the wall-mounted transformer’s
circular connector to the connector on the left side of the pod, next to the serial
connector.

Start the WinIDE editor and open the project files: Double click the WinIDE icon.
From the WinIDE Environment menu, choose @pen Project option, and choose a
project file from theSpecify project file to open dialog. If no project file exists,
choose théNew option from the File menu to create a new project file. Paragraph 8.3
gives additional information about setting up a sample project.

Configure the environment for the ICSO5PW software components. from the
WinIDE Environment menu, select th&tup Environment option to open the
Environment Settings dialog and make the following changes:

— Click on theEXE1 Debugger tab to bring the tab (Figure 1-1) to the front. Set
the executable type, path and filename, command line options (including
optional switches, filenames, or port settings), and other options for the
ICSO5PW debugger application.

M68ICS05POM/D

@ MOTOROLA INTRODUCTION

T N - |
| R Bwmalld]
| = [T
+ |
T |1 el = :—ll
O P [COF RR R Amad . sln r I-H.I
i [LVRH RIS

= T T w Rai g
L]
© W e e e e v

Figure 1-1. Winl DE Environment Settings Dialog EXE1 Tab

— Click on the Assembler/Compiler tab label to bring the tab (Figure 1-2) to the
front. Set the executable path and filename, type, and other options for the
CASMO5W assembler or other application.

5
o e - e e
M Come
Tis (7 (A Smemties = e
[T 1 g
u o iy
=l U 1 o i e

Figure 1-2. Winl DE Environment Settings Dialog Assembler/Compiler Tab

— If necessary, change the programmer settings in the EXE2 (Programmer) tab.

— Click on the General Environment and General Editor tabs and make changes
in each as necessary.

- When you have specified all the environment settings, press the OK button to
save the changes in the WINIDE.INI file and close the Environment Settings
dialog.

Create a project filee The desktop and environment settings you make in the
Environment Settings dialog are stored in theWINIDE.INI file and read each time you
start the WinIDE editor. You may aso choose to save project-specific desktop and
environment settings in a project file (*.PPF) which is read when you open the
project, allowing you to save and use a general environment as well as custom
environments for individual projects. To create the project file:

— Specify the project-specific desktop and environment settings in the WinIDE
editor.

— Choose the Save Project As . . . option from the WinIDE Environment menu
to name and save the project to a directory folder.

Run the ICSO5PW simulator: With a project or source file open in the WinIDE
main window, click the Debugger (EXEL) button (Figure 1-3) on the WinlIDE tool bar
to start the ICS05PW debugger and debug the contents of the active source window.

M68ICS05POM/D 1-5

INTRODUCTION @ MOTOROLA

Additional information about the ICSO5PW debugger can be found in Chapters 6 and

7.

Figure 1-3. The WinI DE Debugger Toolbar Button

* Assemble the code: Press the Assemble/Compile File button (Figure 1-4) on the
WIinIDE toolbar to assemble the source code in the active WinIDE window.
Additional information about the CASMO05W assembler can be found in Chapter 5.

¥

Figure 1-4. The WinI DE Assemble/Compile File Toolbar Button

If you experience problems with the Quick Start procedures, refer to paragraph B.3 for
troubleshooting instructions.

1-6 M68ICS05POM/D

@ MOTOROLA POD INSTALLATION

CHAPTER 2
POD INSTALLATION

2.1 OVERVIEW

This chapter explains how to install the hardware components of the M68ICS05P in-circuit
simulator on your host PC in both interactive and standal one modes.

When the M68ICS05P pod is connected to the serial port of a host PC, you can use the actua
inputs and outputs of your target system during simulation of your source code. When the pod is
not connected to the PC, you can use the ICS05PW software as a standalone simulator.

2.2 INSTALLING THE M68ICS05P POD

Before beginning, locate these pod components:
* Hardware reset switch S3
* Power On switch S1
* 9-pin RS-232 serial connector P2

e 9Volt Input Circular connector P1

Toinstall the M68ICS05P Pod:

1. Connect the M68ICS05P pod to the serial port of your computer: attach the supplied
9-pin seria cable to the connector on the M68ICS05P board and attach the other end
to the host PC’s serial port.

2. Connect the 9-volt power supply: attach the power supply plug to the circular power
connector on the M68ICSO05P pod and plug the power supply into a surge protection

device or wall outlet.

3. To run the ICSO5PW software with actual input and output from the target device,
connect the M68ICSO5P pod to the 28-pin DIP socket on the target board using the
28-pin ribbon cable included in the M68ICSO5P kit. When this connection is
established and the pod and target system are started up, the target system will

provide inputs to and accept output from the ICSO5PW software.

M68ICS05POM/D 2-1

POD INSTALLATION

@ MOTOROLA

2-2

M68ICS05POM/D

@ MOTOROLA SOFTWARE INSTALLATION AND INITIALIZATION

CHAPTER 3
SOFTWARE INSTALLATION AND INITIALIZATION

3.1 OVERVIEW

This chapter how to install and initialize the ICS05PW software.

3.2 THE ICS05PW SOFTWARE COMPONENTS

The ICS05PW software consists of the following components:
* WINIDE.EXE: the Windows Integrated Development Environment editor
» CASMO5W.EXE: the 6BHCO5 Cross Assembler

* |ICSO5PW.EXE: the in-circuit Simulator, optimized for the HCO5Px-family Motorola
microcontrollers

3.2.1 TheWinlDE Editor

The WinIDE editor is atext editing application that lets you use several different programs from
within a single development environment. Use the WinIDE editor to edit source code, launch a
variety of compatible assemblers, compilers, debuggers, or programmers, and configure the
environment to read and display errors from such programs.

If you select error detection options in the Environment Settings dialog, the WinlDE editor will
highlight errors in the source code, and display the error messages from the compiler or
assembler in the editor.

To debug source code in the WinIDE code window, load compatible source-level map files. You
can configure the CASMO5W to produce such map files as an output.

Because the WinIDE editor is modular, you may, for example, choose to substitute a third party
C-compiler or other assembler for the CASMO5W cross assembler provided in the toolkit.
3.2.2 CASMO5W

The CASMO5W is a cross assembler that creates Motorola S19 object files and MAP files from
assembly files containing 68HCO5 instructions.

M68ICS05POM/D 3-1

SOFTWARE INSTALLATION AND INITIALIZATION @ MOTOROLA

The CASMO5W assembler has the same functionality as the DOS version of the assembler,
optimized to take advantage of the Windows graphical environment. Using the assembler in
conjunction with the WinIDE editor, you can edit standard ASCII files (such as the .ASM
assembly files), and use menu options and toolbar buttons to call other customized assemblers,
compilers, or debuggers. The resulting environment can allow assembled files to be downloaded
and tested while the original source code is modified and assembled, al without leaving the
WinIDE editing environment.

Paragraph 5-5 gives additional information about assembler options and how to use them.

3.2.3 1CS05PW

The ICS05PW is a simulator for HC705P9 and HC705P6 microcontrollers that can get inputs
and outputs (1/0) for the device when the external M68ICS05 pod is attached to the host
computer. If you want to use I/0O from your own target board, you can attach the M68ICS05 pod
to your board through the extension cable that comes with the toolkit. You can also program
HCO5P devices using the ICSO5P board and ICS05PW software.

You can start or move to the ICSO5PW in-circuit simulator software from the WinlDE editor.
The ICSO5PW software can also be started using standard Windows techniques and run
independently of the WinIDE editor.

The ICS05PW simulator accepts standard Motorola S19 object code files as input for object code
simulation and debugging. If you are using a third party assembly- or C-language compiler, the
compiler must be capable of producing source-level map filesto allow source-level debugging.

3.3 INSTALLING THE ICS05PW SOFTWARE

The ICS05PW software is on asingle 3.5" diskette containing a setup program that automatically
installs the software on your hard drive.

3.3.1 Installation Steps

To install the software on your host computer’s hard drive, follow these steps:
1. Insert the ICSO5PW diskette into the 3.5-inch disk drive.
For Windows 3.x: in the Program Manager, select Run from the File menu.
For Windows 95: from the Start Menu, select the Run option.

2. In the Run dialog, enter Setup (or click the Browse button to select a different drive
and/or directory) and press OK.

3-2 M68ICS05POM/D

@ MOTOROLA SOFTWARE INSTALLATION AND INITIALIZATION

3. In the ICSO5PW Microsoft Setup Wizard, follow the instructions that appear on the
screen.

NOTE

Select either the Typical Installation type to install the files to your
hard disk, or choose Compact Installation to copy the files to
another diskette.

Table 3-1 lists the files and directories required to control the ICSO5PW program modul es.

Table 3-1. The | CS05PW Softwar e Files

Directory Filename Description

Casmw casmO5w.exe Windows Cross Assembler for the 68HC05

icsO5pw icsO5pw.exe Windows In-Circuit Simulator
WinIDE winide.exe Windows integrated Development Environment (WinIDE) program
Winide.hlp file

Help for WinIDE

3.3.2 Starting the ICS05PW Software
Depending on the operating system you are using, choose the appropriate method for starting the
WinIDE software:

* From the Windows 3.x Program Manager, double-click the WinIDE and/or ICSO5PW
icon(s).

* From the Windows 95 Start Menu, select the WinIDE and/or ICSO05PW icon(s).

Y ou can start the ICSO5PW simulator alone or from within the WinIDE.

3.3.3 ICS Communication

When you double-click the ICSO5PW icon, the software attempts to communicate with the pod
using the specified COM port, baud rate, and default parameters. When the software connects to
the pod, the Status Bar contains the message, "Contact with pod established."

If the pod is not installed, or the ICSO5PW software cannot establish communications with the
pod through the specified COM port, the Can’t Contact Boardlialog appears, with options for
changing the COM port or baud rate and retrying the connection, or choosing to run the simulator
in standalone mode (with no input or output from the pod).

M68ICS05POM/D 3-3

SOFTWARE INSTALLATION AND INITIALIZATION

@ MOTOROLA

NOTE

The COM port assignment defaults to COM 1 unless you specify
another port in the startup command.

The first time you attempt to connect to the pod after installing the ICSO5PW software, the

software asks you to select chip from the Pick Device dialog (Figure 3-1):

Pick Derice Ed |

[HC705P9

v

Ok

X Cancel

Figure 3-1. The Pick Device Dialog

To open the Pick Device dialog, enter the CHIPMODE command in the ICSO5PW Status

Window command line.

3-4

M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

CHAPTER 4
THE WinIDE USER INTERFACE

4.1 OVERVIEW

This chapter is an overview of the WinIDE windows, menus, toolbars, dialogs, options, and
procedures for using each.

4.2 THE WINDOWSINTEGRATED DEVELOPMENT ENVIRONMENT

The Windows Integrated Development Environment (the WinIDE editor) is a graphical interface
for editing, compiling, assembling, and debugging source code for embedded systems using the
M®68ICSO5P In-Circuit Simulator.

The WinIDE interface consists of standard Windows title and menu bars, a WinIDE toolbar, a
main window containing any open source or project file windows, and a status bar. The WinIDE
components are labeled in Figure 4-1 and described in paragraph 4.3.2.

Title Bar

Menu Bar .-I.::: - :: e e
Toolbar AIFT™] [S[a] [a[ele[=]

Source Windows

: Bhwi lude “padTes . atEm
o, Bhenneee —inin, s
T abeclede TChargw cawss
 , Sheclmdr “dcharge aws®
) , aieclimie “opilors aws®
e, oe o Siecleie “nlecoae™
. Glscliwie "resds s’
. Bisclsge “lar. s
. BEsclsge “oapley - ses®
BLBEDuie "o, iE”
" Bisglege “TewT, aner
_.’ Bl lude i TieL a5 -

Main Window

Status Bar 1] [ot 18 |

Figure4-1. Winl DE Window Components

M68ICS05POM/D 4-1

WinIDE USER INTERFACE @ MOTOROLA

4.3 WinIDE MAIN WINDOW

4.3.1 Main Window Functions

When you first start the WinlIDE editor, the main window opens without any source or project
files. As you open or create source files or a project, they appear as subordinate windows in the
main window. You can move, size, and arrange subordinate windows using standard Windows
techniques and the WinIDE Window menu options.

Use the WinIDE main window to:

Open, create, edit, save, or print source (*.ASM, *.LST, *.MAP, and *.S19) or project
(*.PPF) file.

Configure the desktop and environment settings for the editor, assembler, compiler,
debugger, and other programs.

Launch the in-circuit ssmulator, compiler, debugger, or another program.

4.3.2 Main Window Components

Figure 4-1 shows how the WinIDE main window might look during atypical editing project, and
labels the standard window components:

4-2

Title Bar: Thetitle bar appears at the top edge of the main window and contains:
— Theapplication title,

— The name of the target microcomputer application for which you are editing
source code,

— Theobject file or files, if any (usually truncated),
- Windows control buttons for closing, minimizing or maximizing the window.

Menu Bar: The menu bar appears immediately below the title bar and contains the
names of the WinIDE menus.

Toolbar: The WinIDE toolbar appears just below the menu bar and contains shortcut
buttons for frequently used menu options.

Main Window: The main window area is the inside portion of the main window
which contains the open subordinate windows that you can resize, reposition,
minimize, or maximize using standard Windows techniques or Window menu
options.

M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

o Status Bar: The status bar (Figure 4-2) appears along the bottom edge of the main
window and contains a number of fields (depending on the project) that show:

- Source-file line and column numbers of the blinking insertion point cursor

— System status or progress of the current window; for example, when the
window is edited, the status will be Modified

— Total number of linesin the active window

— Top: the current line position in the file of the top of the active window
— Bytes: displays the total number of bytesin the active window

— Insert/Overwrite mode: indicates the current typing mode

The status fields expand and contract as client area contents change and files become
active.

| B1 | Modfied | Tatak11 | Top: 1 | Byes277 | Inseit ‘

Figure 4-2. WinIDE Status Bar

4.4 GETTING STARTED

4.4.1 Prerequisitesfor Starting the Winl DE Editor

Before you can start the WinIDE editor, the Windows operating environment must be running
and the ICSO5PW software must be installed in the host computer.

Remember that for the MG68ICSO5P to run in simulation mode, the asynchronous

communications cable must connect the M68ICSO5P pod on the platform board to the host
computer, and the power to the M68ICS05P pod must be on.

4.4.2 Starting the Winl DE Editor

To start the editor, select the WinIDE icon by double-clicking the ICS05PW Program Group icon
in the Windows 3.1 Program Manager or by selecting the icon from the Windows 95 Start menu.

M68ICS05POM/D 4-3

WinIDE USER INTERFACE @ MOTOROLA

4.4.3 Opening Source Files

When the WinIDE editor opens, the main window is empty. To build the environment for your
project, choose the Open option from the File menu (or click the File button on the WinIDE
toolbar). In the Open File dialog, choose the files that will make up your project:

1. Select the drive containing the files from the Drives list.
2. Select the directory folder containing the files from the Folderslist.

3. You may use the Filename text box to specify a filename or a wildcard/ extension to
filter the list of filenames (or choose a file type from the List files of type list). The
default file typeis .ASM, but you can also choose:

*.c ('source code files)
* Ist (listing files)

* txt (text files)

** (al files)

When al of the project files have been selected, click the OK button to open the files in the
WinIDE main window.

4.4.4 Navigating in the WinIDE Editor
To navigate among subordinate windows:
To navigate among the several sub-windows in which your project files are displayed in the

WinIDE main window:

¢ Choose the subordinate window’s filename from the Window menu or click on the
file'stitle bar to bring it to the front of the cascaded stack.

» If you have alarge screen or afew project files, you may choose the Tile option from
the Window menu to lay out all of the sub-windows so that all are visible, or choose
the Cascade option to arrange all windows so that only the top window is entirely
visible.

* Regardless of how you arrange the windows, the title bar of all windows are visible.

To move between the WinIDE editor and the ICS05PW simulator:

* From the WinIDE editor, click the External Program 1 toolbar button \él to switch
to the in-circuit simulator or the application which you have specified as the debugger
or other external program to use.

* From ICSO5PW, click the Back to Editor toolbar button [+ to toggle back to the
editor.

4-4 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

445 Using Markers

Markers provide a convenient way to mark multiple points in a file for navigating between
frequently visited locations while you are editing. Y ou can set as many as 10 markers in source
filesin the WinIDE editor. A marker appearsin the file as a small button labeled with the marker
number.

When you save the project, the WinIDE editor saves the markers for all open edit files as well, so
that when you open the project again, the markers are still set.

To set amarker anywherein thefile:
1. Placethe cursor on the line where you want the marker to be.
2. Press CNTL + SHIFT + N, where N is a value from 0 to 9 indicating the marker
number. A marker appears at the far |eft of the line.

To move to a marker, press CNTL + N, where N is denotes a marker number between 0 and 9.
Thisfeature is useful if you are editing alargefile.

Markers can also be set, changed, navigated to, or cleared using options on the Edit shortcut
menu (Figure 4-3). Open the Edit shortcut menu by clicking the right mouse button in any edit
window.

B
By
Hazte

Toogle Marker 0.9 »
Goto Marker 0.9 »
Clear Al Markers

Figure4-3. Edit Shortcut Menu

To set or clear amarker using the Edit shortcut menu options:

1. With the cursor in any editing window, click the right mouse button to open the
shortcut menu.

2. Position the cursor on the line where the marker should appear. Click the right mouse
button to display the shortcut menu.

3. Click the Toggle Marker 0-9 option to open the list of markers.

4. Click once on the marker to toggle. When the marker number is checked, it is toggled
on; when the marker number is unchecked, it istoggled off.

M68ICS05POM/D 4-5

WinIDE USER INTERFACE @ MOTOROLA

To move to a marker number using the shortcut menu options:

1. With the cursor anywhere in the edit file, click the right mouse button to open the Edit
shortcut menu .

2. Click on the Go To Marker 0-9 option to open the Marker sub-menu (Figure 4-4), and
choose the marker number to move to.

Toggle Marker 0
Toggle Marker 1
Toggle Marker 2
Toggle Marker 3
Togale Marker 4
Toggle Marker &
Toggle Marker B
Togale Marker 7
Toggle Marker 8

Figure 4-4. Marker Sub-menu

You can execute many ICSO5PW menu options using either keyboard commands or toolbar
buttons. For example, to move to a marker, press the Ctrl + Shift + N key combination, where N
is the marker number).

45 COMMAND-LINE PARAMETERS

The WinIDE editor lets you specify command line options to pass to each executable program.
The name of the currently edited file, or some derivative thereof, can be passed within these
options. To pass the current filename, specify a parameter %FILE%. The WinIDE editor will
substitute this string with the current filename at execution time. You may aso change the
extension of the passed filename, by specifying it within the %FILE% parameter. For example,
to specify an .S19 extension on the current filename the user would specify a %FILE.S19%
parameter.

For example, if the current filename being edited is MYPDA.ASM:

Parameters passed to
Parameters specified program
%FILE% S L D MYPDA.ASM S L D
%FILE.S19% 1 @2 MYPDA.S19 1 @2

Although it is by default the currently edited filename that is used in the %FILEY% parameter
substitution, the environment can be configured always to pass the same filename. Do this by
checking the Main File option in the Environment Settings dialog’'s General Options tab. This

4-6 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

technique is useful if you want to pass a specific filename to the external program without regard
to what is being edited.

4.6 WinIDE TOOLBAR

The WInIDE Toolbar (Figure 4-5) provides a number of convenient shortcut buttons that
duplicate the function of the most frequently used menu options. A tooltip or label pops up when
the mouse button lingers over atoolbar button, identifying the button’s function.

a[Z[%] [E[m[z] [=]EE]=

Figure 4-5. Winl DE Toolbar

Table 4-1 identifies and describes the WinlDE toolbar buttons.

M68ICS05POM/D 4-7

WinIDE USER INTERFACE

@ MOTOROLA

Table4-1. WinIDE Toolbar Buttons

Icon Button Label Button Function
E External Program 1 Call the External Program 1 (Debugger or ICS) specified
=4 (Debugger) in the Environment Settings dialog’s EXE 1 (Debugger)
tab; this could be the debugger (by default), the ICS or
other external program, i.e., third party assembler,
debugger, or compiler.
'Z External Program 2 Call the External Program 2 as specified in the
L Environment Settings dialog’'s EXE 2 (Programmer) tab
&% Assemble/Compile File Assemble or compile the active source window .
Cut Cut the selected text from the active source window (this
button is a shortcut for the Edit - Cut menu option).
Copy Copy the selected text in the active source window to the
Windows clipboard (this button is a shortcut for the Edit -
Copy menu option).
Ck Paste Paste the contents of the Windows clipboard at the
= insertion-point location in the active source window (this
button is a shortcut for the Edit - Paste menu option).
Open File Close the active source window (this button is a shortcut
for the File - Open menu option).
Save File Save the file in the active source window (this button is a
i shortcut for the File - Save menu option).
= Save Project (All Files & Save the active project (this button is a shortcut for the
Setup) Environment - Save Project As . . . menu option).
= Close File Close the active source window (this button is a shortcut
for the File - Close menu option).

M68ICS05POM/D

@ MOTOROLA

WinIDE USER INTERFACE

4.7 WinIDE MENUS

Table 4-2 summarizes WinIDE menu titles and options.

Table 4-2. WinIDE Menus and Options Summary

Menu Title Option Description
File New File Open a new file window ("No nhame")
Open File ... | Display the Open File . . . dialog to choose a file to open
Save File Save the current file
Save File As .. Open the Save As. .. dialog to choose a directory and
filename in which to save the current file
Close File Close the current file
Print . . . Open the Print . . . dialog to print the current file
Print Setup. .. | Open the Print Setup . . . dialog to choose printer options
Exit Close the WinIDE editor
Edit Undo Undo the last action
Redo Redo the last action
Cut Cut the selection to the clipboard
Copy Copy the selection to the clipboard
Paste Paste the contents of the clipboard
Delete Delete the selection
Select All Select all text in the current window

M68ICS05POM/D

WinIDE USER INTERFACE

@ MOTOROLA

Table4-2. WinIDE Menus and Options Summary (continued)

Menu Title Option Description
Environ- Open Project Open the Specify Project File to Open dialog
ment
Save Project Save the current project
Save Project Open the Specify Project File to Save dialog
As. ..
Close/New Close the current project file or open a new project file if no
Project current file
Setup . .. Open the Environment Settings Dialog to change settings for:
- General Environment
- General Editor
- Environment Settings
- Debugger Settings
Setup Font . .. | Open the Font dialog to specify font options for the text in the
current file
Search Find. .. Open the Find dialog to enter a search string
Replace . . . Open the Replace dialog to enter a search and replacement
string
Find Next Go to the next occurrence of the search string
GotolLine... | Openthe Go to Line Number dialog and enter a line number
to go to in the current file
Window Cascade Cascade open windows with active window on top
Tile Tile open windows with active window on top
Arrange lcons | Arrange minimized window icons along the bottom edge of
the main window
Minimize All Minimize all open windows
Split Toggle a split window in the active file
Windows (by Itemize the open and minimized windows by name in order of
name) opening
Help Contents Opens the WinIDE Help Contents Page of the Help File
About Displays the WinIDE About Window

4-10

M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

4.8 WinIDE FILE OPTIONS

This section describes the WinIDE File menu options for managing and printing source files or
exiting the WinIDE editor.

To select aFile option, click once on the File menu title to open the File menu (Figure 4-6). Click on an
option to perform the operation. Y ou may also use accelerator or shortcut keystrokes to execute
the option.

HmaFin Lk
e Fim Cuiet]
Soiwn Tk LS
Fepen e g

Dl Fi Ll
o]

Pyrd et

Figure 4-6. File Menu

4.8.1 New File

Choose New File from the File menu to open a new client window in the WinIDE main window.
Thetitle of the new window in the title bar defaults to [NONAME#], where # reflects the number
of new source windows created during this session. If there is an active project, the project name
appearsin thetitle bar. If there is no project, [No Project] precedes the window name.

Use this new window to enter source code. When you save the contents of this window, the
WinIDE editor prompts you for a new filename. This new filename replaces the NONAME#] in
thetitle bar.

Alternatives: Type Ctrl + N or click the New toolbar button. This is the keyboard equivalent to
choosing the File - New File menu option.

M68ICS05POM/D 4-11

WinIDE USER INTERFACE @ MOTOROLA

4.8.2 Open File

Choose Open File from the File menu to open the Open File Dialog (Figure 4-7) and choose an
existing filename, file type, directory, and network (if applicable) to open.

Open File H
File name: Folders:
[=_asm| d:\pemicroisample™1

Cancel |
charge.asm = [A -
dcharge.asm 25 pemicio
dizplay.asm) e~1
eeprom.asm sample
equates_asm i
init. asm
isr.asm -
mainl.asm i

List files of type: Drives:
Assembly files [*.asm) j I = d: j

Figure4-7. Open File Dialog

Each file opensin its own client window within the main WinlDE window.

Alternatives: Type Ctrl + O or click the Open button on the toolbar. This is the keyboard
equivalent to choosing the File - Open File menu option.

4.8.3 SaveFile

Choose Save File from the File menu to save the file in the active source window.

» If you are saving thefile for the first time (that is, it has not yet been named), the Save
As dialog appears. Enter a new filename for the file and accept the current file type,
directory or folder, and drive, or choose new options. Press the OK button to save the
file to the selected drive/directory.

» If the file has been saved previously (and has a name), the file is saved with the
filename, in the directory and drive previously specified, and the source window
remains open.

Alternatives: Type Ctrl + S or click the Save button on the toolbar. This is the keyboard
equivalent to choosing the File - Save File menu option.

4-12 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

4.8.4 SaveFileAs...

Choose Save File As . . . from the File menu to save the contents of the active source window
and assign a new filename. The Save As dialog opens. Enter a new file name in the File Name
field and click the OK button to save the file and return to the source window.

To save the file with the name of an existing file, select the filename in the File Name list, and
click the OK button. A confirmation dialog will ask you to confirm that you want to overwrite
theexisting file.

485 CloseFile

Choose Close File from the File menu to close the file in the active source window.

If you chose the Give user option to save each file option in the General Environment tab in the
Environment Settings dialog, the Information dialog will display, reminding you to save changes
tothe ASM file.

Alternatives: Type Ctrl + D or click the Close toolbar button. This is the keyboard equivalent to
choosing the File - Close File menu option.

4.8.6 Print File

Choose Print . . . from the File menu to open the Print dialog (Figure 4-8) and choose options
for printing the active source window.

The Print dialog for your operating system and printer capabilities opens for you to choose Print
range, Print quality, and open the Print Setup dialog to change printer settings.

ek B it S0 Pamtr i LF .

Bt b Lwed

™ e |

(3
=

-
meigedde [0 5 gawe [

i

Figure 4-8. Print Dialog

NOTE

The Print option is active when at least one source window is
open. The WinIDE editor disables the option if no window is open.

M68ICS05POM/D 4-13

WinIDE USER INTERFACE @ MOTOROLA

4.8.7 Print Setup

Choose the Print Setup . . . option from the File menu to open the Print Setup dialog for your
operating system and printer. Use this dialog to choose the printer, page orientation, paper size,
and other options for your printer.

4.8.8 EXxit

Choose the Exit option from the File menu to close the editor. If a project or source window is
open, the editor closes the files and exits.

Alternatives: Type Alt + F4. This is the keyboard equivalent to choosing the File - Exit menu
option.

4.9 WinIDE EDIT OPTIONS

This section describes the WinIDE Edit menu options for creating or editing source file contents.

To perform an Edit operation, click once on the Edit menu title to open the Edit Menu
(Figure 4-9). Click on an option to perform the operation.

Undo Clrl+Z
Redo Shift+Chl+2

Cut Clrl+
LCopy Clrl+C
Paste Clrl+t
Delete Del

Select All

Figure 4-9. Edit Menu

49.1 Undo

Choose Undo to undo or reverse the last action or change you made in the active source window.

Changes that you make to the contents of the window (and that are undoable or reversible) are
saved in an undo stack, where they accumulate, up to a maximum of 20 instances. You can
reverse your changes in descending order of the sequence in which they were made. If no more
changes remain in the stack, the Undo option is disabled.

Reversible actions are local to each source window. Commands that are not reversible do not
contribute to the undo stack. Y ou cannot, for example, undo the command to open a new window
using the Undo command.

Alternatives: Type Ctrl + Z. Thisis the keyboard equivalent to selecting the Edit - Undo menu
option.

4-14 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

4.9.2 Redo
Choose Redo to restore the most recently undone action in the active window.

The Redo option restores actions undone or reversed by the Undo option, in ascending order, that
is, last action first. Reversible changes to the window’s contents accumulate in the window’s
undo stack. Once a change has been reversed using the Undo option, the change can be reversed,
using the Redo option When no more changes remain (that is, the top of the Redo stack is
reached) the Redo option is disabled.

Some commands are not reversible: they do not contribute to the undo stack and therefore cannot
be redone. For instance, since reversible actions are local to each source window, opening a new
window is an action that cannot be undone using the Undo command, or redone using the Redo
command.

NOTE

The Redo option is active only if you have used the Undo option to
modify the contents of the active source window.

Alternative: Type Shift + Ctrl + Z. Thisisthe keyboard equivalent to selecting the Edit - Redo
menu option.
493 Cut

Choose Cut from the Edit menu to cut the currently selected text from the active source window
and place it on the system clipboard.

NOTE

The Cut option is active only when you have selected text in the
active source window.

Alternative: Type Ctrl + X. This is the keyboard equivaent to selecting the Edit - Cut menu
option.

M68ICS05POM/D 4-15

WinIDE USER INTERFACE @ MOTOROLA

494 Copy

Choose Copy from the Edit menu to copy the selected text from the active source window to the
Windows clipboard.

NOTE

The Copy option is available only if you have selected text in the
active source window.

Alternatives: Type Ctrl +C or click the Copy toolbar button. Thisis the keyboard equivalent to
selecting the Edit - Copy menu option.
495 Paste

Choose Paste from the Edit menu to paste the contents of the Windows clipboard into the active
source window at the insertion-point location.

Alternatives: Type Ctrl + V or click the Paste button on the toolbar. This is the keyboard
equivalent to selecting the Edit - Paste menu option.
4.9.6 Delete

Choose Delete from the Edit menu to delete the selected text from the active source window
without placing it on the Windows clipboard. Text you delete using the Delete option can be
restored only by using the Undo option.

Alternatives: Pressthe Delete key. Thisis the keyboard equivalent to selecting the Edit - Delete
menu option.
4.9.7 Select All

Choose Sdlect All from the Edit menu to select all text in the active source window.

4.10 WinIDE ENVIRONMENT OPTIONS

This section describes the WinIDE Environment menu options for managing project information,
and setting up environment and font settings for a project.

Environment settings represent the current environment and configuration information for the
WinIDE editor. These settings are stored in the WINIDE.INI file, from which they are loaded
each time you start the editor, and saved each time you exit from the editor.

4-16 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

When you start the editor, the application opens the WINIDE.INI file and reads the project
information. If there is an open project, the project file's environment settings are read and used
instead. Thislets you have different environment configurations for different projects.
Environment information stored in the WINIDE.INI fileincludes:

* If aproject isopen, its name

* Current font information

» Current source directory and project directory paths

* The preferences and options you set in the Environment Settings dialog tabs,
including:

— General Environment options
— General Editor options
— Executable options for assembler, debugger, compiler, and programmer

To choose an environment option, click once on the Environment menu title (Figure 4-10) to open the
menu. Click on the option to execute.

Open Project
Save Project
Save Project As...
LCloze/Mew Project

Setup Environment....
Setup Font...

Figure 4-10. Environment Menu

Project files have the extension .PPF; they store two kinds of information:
* Environment Settings: User settings and WinlIDE configuration parameters
» Desktop Information Open edit windows, size and location, markers

M68ICS05POM/D 4-17

WinIDE USER INTERFACE @ MOTOROLA

4.10.1 Open Project

Choose Open Project from the Environment menu to choose the project file in the Specify
project fileto open dialog (Figure 4-11).

Figure 4-11. Specify project file to open Dialog

1. Enter the project name in the File name: text box or select the project name from the
list box below.

2. Pressthe OK button to open the new project file (or press the Cancel button to close
the dialog without opening afile).
4.10.2 Save Project

Choose Save Project from the Environment menu to save the current project in the currently
specified file and pathname.

4.10.3 SaveProject As. ..

Choose Save Project As. . . from the Environment menu to display the Specify project file to
save dialog (Figure 4-12).

EE._ [T ar |
a 1
S p BB
_j pmarey |
—§ vempin
|
} - |
Swew bin ar i Trgmn
[Frapocn i -8 =] m =

Figure 4-12. Specify project file to save Dialog

1. Enter the project name in the File name: text box or select the project name from the
list box below.

2. Pressthe OK button to open the new project file (or press the Cancel button to close
the dialog without opening afile).

4-18 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

4.10.4 Close/New Project

Choose Close/New Project from the Environment menu to:
» Closean active current project file
* Open anew project

4.10.5 Setup Environment . ..

Choose Setup Environment . . . from the Environment menu to display the Environment
Settings dialog box.
The Environment Settings dialog contains five tabs:

* Genera Environment

* Generd Editor

* Assembler/Compiler

* EXE 1 (Debugger)

» EXE 2 (Programmer)

In the Environment Settings tabs, you can choose options by marking option buttons (sometimes
called radio buttons), check boxes, and entering information in text boxes.

M68ICS05POM/D 4-19

WinIDE USER INTERFACE @ MOTOROLA

4.10.5.1 TheGeneral Environment Tab

Click the General Environment tab in the Environment Settings dialog (Figure 4-13) to change
options for saving the project files, exiting the WinIDE editor, and storing a filename to be
passed to an external program as a parameter.

T . |

| AuswbioCongles | DE Dabugas | D2 P _|

[——
Gogysl Erveworeoesd T 3 preossd Exiica I

Upon Ewieng WM 1DE o i
I+ A Surme: e i el il Q
[+ Aader Egme A0 Filen X Corce |
[+ fink weer “Ewd fipplecal jen 7

(=] |

I+ fiho navea &l oger oo hiac

TFILL T Faomssisy poni3ed o aciamial pop) s &=
& Cudiendle gidfved (e roems
7 iy s a I

¥ b T amel e b
I+ awp vt apbon o paww pech s

Ly

Figure 4-13. Environment Settings Dialog
General Environment Tab

NOTE

Clicking the OK button on any tab saves all changes made in the
Environment Settings dialog and closes the dialog.

The General Environment Tab offers these options:
* Upon Exiting the WinI DE Editor

— Auto-Save the Current Project: Select this option to save the currently open
project automatically, with the file extension .PPF, without prompting. The
editor saves all currently open files with the current project. If you do not
select this option, the editor prompts you to save the open project when you
exit. This setting only has an effect if a project is open when you exit.

— Auto-Save All Files. Select this option to save all open editor files
automatically, without prompting, when you exit. If you do not select this
option, the editor will prompt you to save open files when you exit.

— Ask user " Exit Application Select this option to display an Exit Application
confirmation message when you exit. If you do not select this option, the
editor will close without asking for confirmation when you choose the Exit
option from the File menu.

* SavingtheProject

— Also save all open editor files. Select this option to save all open editor files
whenever you save the project file. If you do not select this option,

4-20 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

project/environment information is written to the project files, but editor files
are not saved when you choose the Save Project option from the Environment
menu.

* %FILE% Parameter passed to executable programs is. The %FILE% parameter
specifies what is passed on the command line in place of the %FILE% string. You
may specify the %FILE% string as a command line parameter for executable
programs launched from within the WinIDE editor.

— Currently edited filename: Select this option to use the name of the current
active file (the window with focus) as the %FILE% parameter substitution.

— Main Filename: Select this option to use the filename in the Main filename
edit box as the %FILE% parameter substitution.

NOTE

If you are using include files, you must enter the full pathname of
the file containing the included files in the Main filename edit box.

* If Modified files exist just prior to external program execution: All executable
programs which you can launch from the WinIDE editor offer the option to save all
open editor files before the executable is launched.

— Give user option to save each file: Select this option if you want to be
prompted to save each modified file before the external program is launched.
If you do not select this option, the external program runs without asking for
your confirmation. The result may be that an external program runs while
modified files exist in the editing environment, a circumstance that may be
undesirable and lead to incorrect results.

M68ICS05POM/D 4-21

WinIDE USER INTERFACE @ MOTOROLA

4.10.5.2 General Editor Tab

Click the General Editor tab in the Environment Settings dialog (Figure 4-14) to bring the
General Editor tab to the front. Use the General Editor tab to change editing options such as
indentation, word wrap, and tab settings.

NOTE:

To change font options, choose the Setup Font . . . option from
the Environment menu.

| dssawriobe Compls [FE | D akagge LE 2 Mysmaarre |
(G il £ remorared T JGereyal E i I
Giemead iptamy o D |
I ftr-bnaortiation
¥ Cinaln Bactup x Eml
S
aad Wiap
7 g I e
gy s Gy [E |
& ol Wasg OIT
Tk Setings
i P 1 sk Tk Siza
" Pl Takey
VE Gamat Tk

Figure 4-14. Environment Settings Dialog:
General Editor Tab

* General Options

— Auto-Indentation: Select this option to place the cursor in the column of the
first non-space character of the previous line when the Enter key is pressed. If
this option is not checked, the cursor goes to the first column. For example, if
the current line begins with two tab spaces, pressing the Enter key will begin
the next line with two tab spaces, aligning the new line under the first text of
the previousline.

— Create Backup: Select this option to create a backup file whenever a file is
saved. The WinIDE editor will copy the current disk version of the file (the
last save) to afile of the same name with the .BAK extension, then save the
current edited copy over the editing filename. The default (and recommended)
setting for this option is "on," giving you the option to return or review the
previous version of the file. If you do not select this option, the currently
edited file will be saved, but no backup will be made.

* Word Wrap

— Wrap to Window: Select this option to have the cursor to wrap to the left
when it reaches the far right side of the window. This lets you see all the text

4-22 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

in the file, without scrolling the line. If you do not select this option, text
wraps only when you press the Enter key.

— Wrap to Column: Select this option to wrap text to the left side when the
cursor reaches a specified column. This lets you see al the text in the file,
without scrolling the line. Set the column number at which text wrapping
should occur in the edit box to the right of this option.

— Word Wrap OFF: Select this option to turn text wrapping off. To view or edit
text, which does not fit horizontally in the window, use the scroll controls. In
general, this option should be on when you are writing or editing code.

e Tab Settings

— Fixed Tabs: Select this option to use spaces to emulate tabs: pressing the tab
key inserts a number of spaces to bring the cursor to the position of the next
tab stop. Changing the tab size affects only future tab spacings. Past tabs
remain unchanged.

— Real Tabs: Select this option to use actual tab characters: pressing the tab key
insets a tab character. The tab character is displayed as a number of spaces
determined by the tab size, but is really a tab character. Changing the tab size
affects the display of all tabsin thefile, present and future.

— Smart Tabs: Select this option to enable smart tabs:

= |f the previous line contains text, pressing the tab key advances the
cursor to the same column as the beginning of the next character group
on the previousline.

= |f the previous line does not contain text, smart tabs behave as fixed
tabs.

— Tab Size: Enter the number of spacesin atab. This setting affects how all tabs
operate: fixed, real, or smart tabs. This number is the default display size of al
tab characters, and the size in spaces of atab in both fixed and smart modes. If
thetab sizeisN, thetab stopsareat 1, N+1, 2N+1, 3N+1, and so on.

4.10.5.3 Assembler/Compiler Tab

In addition to running an external compiler, you may need to run other external programs such as
third party programmers, debuggers, or simulators. The WinIDE editor lets you configure as
many as three external programs. two general-purpose programs and one compiler. Use the
settings on the Assembler/Compiler tab of the WinIDE Environment Settings dialog to set up
external programs.

Click the Assembler/Compiler tab heading in the Environment Settings dialog (Figure 4-15) to
bring the tab to the front. Use the options on this tab to change the settings and parameters for the
assembler or compiler path and type, and specify output, listing, and assembly preferences.

M68ICS05POM/D 4-23

WinIDE USER INTERFACE @ MOTOROLA

» EXE Path: Enter the full path and executable name of the compiler in the text box.
The extensions EXE/COM/BAT are legal. For a DOS executable or BATch file, you
may want to create a PIF file to prevent the screen from changing video modes when
the executable runs.

Environment Settings E

F General Environment T General Editor]
Assembler/Compiler; | EXE1(Debugger) | EXE2 (Progiamme)

Type IP&E CASMWxx Azzembler jl - i
el

 Output Control Listing Options
[¥ Output 519 Object ¥ Show Cycles in Listing
[¥ Dutput Debug File ¥ Expand Includes in Listing
[+ Output Listing File ¥ Expand Macros in Listing

—Aszembly Pref ces
[¥ Show Assembler Progress ¥ Save Files Before Assembling
[~ W ait for Aszembler Result [~ Sound Bell on Error

Figure 4-15. Environment Settings Dialog:
Assembler/Compiler Tab

* TYPE: Click on the downward-pointing arrow to the right of the Type list box to
display the compiler types. Click on the compiler type to select it. The options in the
Assembler/Compiler tab change according to the compiler type chosen:

— If you select the P& E compiler, a number of compiler options are available.

— If you select a non-P&E compiler, options lets you specify the parameters to
pass the compiler.

* Output Control: These options specify the output files that the assembler will create:

— Output S19 Object: Select this option to have the assembler output an S19
object file. The S19 object file contains the compiled instructions from the
program assembled. The output S19 file has the same name as the assembly
file, but with the .S19 extension. Appendix A: S-Record Information gives
more information about the S19 file format.

— Output Debug File: Select this option to have the assembler produce a debug
.MAP file. The debug .MAP file contains symbol information as well as line
number information for source level debugging from the program assembled.
The output debug file has the same name as the assembly file, but with the
.MAP extension.

— Output Listing File: Select this option to have the assembler produce a listing
file. The listing file shows the source code as well as the object codes that
were produced from the assembler. Listing files are useful for debugging, as

4-24 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

they let you see exactly where and how the code assembled. The output listing
file has the same name as the assembly file, but with the .LST extension.

» Listing Options: The following options specify how the assembler generates the
listing file.

— Show Cycles in Listing: Select this option to include cycle information for
each compiled instruction in the listing (.LST) file. View the cycle information
to see how long each instruction takes to execute. The cycle count appears to
the right of the address, enclosed in brackets.

— Expand Includesin Listing: Select this option to expand all include files into
the current listing file. This lets you view all source filesin amain listing file.
If this option is not checked, you will see only the $Include statement for each
included file, not the sourcefile.

— Expand Macros in Listing: Select this option to expand al macros into the
listing file: each time the macro is used, the listing will show the instructions
comprising the macro. If you do not select this option, you see only the macro
name, not its instructions.

* Assembly Preferences

— Show Assembler Progress. Select this option to display a popup window
showing the current assembly status, including:

» The passthe assembler is currently on
» Thefilethat is currently being assembled
» Thelinethat is currently being assembled

If this option is not checked, you must wait for the assembly result to be
displayed on the status bar at the bottom of the environment window.

— Wait for Assembler Result: Select this option and the Show Assembler
Progress option to cause a progress window displaying the assembly result to
stay up when assembly is done. The assembly result window will remain until
you dismiss it by clicking the OK button. In general, do not select this option,
as the assembler results are shown in the status bar at the bottom of the
WinIDE window.

— Savefiles before Assembling: Select this option to save al open files to disk
before you run the assembler. This is important because the
assembler/compiler reads the file to be compiled from the disk, not from the
open windows in the WinIDE editor. If you do not save the file before
assembling it, the assembler will assemble the last saved version. In general,
you should leave this option checked.

— Sound Bell on Error: Select this option to have the assembler beep if it
encounters an error.

M68ICS05POM/D 4-25

WinIDE USER INTERFACE @ MOTOROLA

4-26

* Other Assembler/Compiler: If you choose Other Assembler/ Compiler . . . from the
Type list, the WinIDE editor offers these additional options:

Options: Enter the options to pass to the compiler on the command line. Such
options generally consist of switches that instruct the compiler, and a
filename. Enter the %FILE% string in the command line to insert either the
current filename or the filename specified in the Main Filename option in the
EXE Path text box of the General Environment tab options (Figure 4-13).

Confirm command line: Select this option to display a window describing the
executable you want to run, and the parameters that you want to pass to the
executable, just before the assembler/compiler is run. This gives you the
option to cancel the assemble/compile, continue as described, or modify
parameters before you continue with the assembly. If you do not select this
option, the assembler/compiler runs without prompting you to confirm
parameters.

Recover Error from Compiler: Select this option to have the WinIDE editor
attempt to recover error/success information from the assembler/compiler, and
open the file with the error line highlighted (and displayed in the status bar)
when an error is encountered. For this feature to work, the Error Filename and
Error Format options must also be set in this tab. If this option is not checked,
the WinIDE editor will not look for a compiler result and will not display the
results in the status bar.

Wait for compiler to finish: Select this option to have the WinIDE editor
disable itsalf until the compiler terminates. Y ou must select this option for the
editor to attempt to recover error/success information from the assembler/
compiler. Further, turning this option on prevents you from running external
programs from the editor that may require compilation or assembly results. If
you do not select this option, the editor starts the assembler/compiler, and
continues, letting Windows' multitasking capabilities take care of the program.

Save files before Assembling: Select this option to save all open files to disk
before the running the assembler. This can be very important since the
assembler/compiler reads the file to be compiled from the disk and not from
the memory of the WinIDE editor. If the file being assembled isn't saved, the
assembler or compiler will assemble the last saved version. For this reason,
you should leave this option checked.

M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

Error Format: Click the down arrow to the right of the Error Format list box to
display the list of error formats (Figure 4-16). If the WinIDE editor is to attempt to
read back an error from a compiler, it must understand the error syntax. This option
lets you select an error format from a list of supported formats. If the Recover Error
from compiler option is checked, and the filename specified in the Error Filename
text box is found, the editor parses that file from end to beginning looking for the
error. If the editor finds an error, it opens the file, highlights the error line, and
displays the error in the status bar.

PLE Compatible

SDS5 C-Compiler
Microzoft Compatible
Borland Compatible

Figure4-16. Error Format List

Error Filename: Enter the filename to which the editor pipes the compiler/assembler
error output. Some compilers provide a switch for piping error output to a file; others
require that you handle this manually. As most compilers are DOS-based, you can
create a batch file into which to pipe the output. For example:

COWI LER OPTIONS > ERROR. TXT

This batch file creates the file ERROR.TXT and sends the assembler/compiler output to
that file. Most C-compilers require a batch file to run the compiler through its various
steps (compiling, linking), to which you may add a pipe for error output.

Once the environment reads this error file, the WinIDE editor displays the results, and
the deletes the error file. If you want to keep a copy of the file, you must add such
instructions to the batch file.

M68ICS05POM/D 4-27

WinIDE USER INTERFACE @ MOTOROLA

4.10.5.4 Executable 1 (Debugger) and Executable 2 (Programmer) Tab

Choose either the EXE 1 (Debugger) tab or the EXE 2 (Programmer) tab (Figure 4-17) in the
Environment Settings dialog to bring either tab to the front. Enter options for the general-purpose
external programs, for example, the ICSO5PW, that you will be using with this project.

| Gareisl Drvvissvasr: Lol [diee
Eoyparabn T eyl T ESE 1 jiirbamyeye] I E5ELE Propweal|
oo]
Tepe [Delaiggen] v |
PHE Paih [WsEvsrss D | T |
Optiea [EFILE 51823 |

[7 Condiem Commmornl brws Dedivwe §urwmr
I~ Sava il hiar e ureeg
[Wil [prrgaam @ gty |y s ms] fra sl r|

Figure 4-17. Environment Settings Dialog:
EXE 1 (Debugger) and EXE 2 (Programmer) Tabs

NOTE
The options are the same in both tabs.

* Type: Enter adescription of the executable type in the Type text box. This string will
appear in other parts of WinIDE editor. The default for Executable 1 is Debugger. For
the ICSO5PW, you may choose to change the Type to ICS. This will change the label
on this tab and elsewhere in the dial og.

— EXE Path: Enter the full path and executable name of Executable 1 in the
EXE Path text box. The executable name may have an EXE, COM, or BAT
extension. For a DOS-based executable or batch file, you may choose to create
a PIF file to prevent the screen from changing video modes when the file is
run.

— Options: Enter the options you want to pass to the executable on the command
line in the Options text box. In general, options will consist of switches that
instruct the executable from the command line. Y ou may add a filename using
the %FILE% string. The %FILE% string inserts either the currently active
filename, or the filename specified by the %FILE% parameter, set in the
%FILE% parameters to pass to externa programs field in the General
Environment tab.

4-28 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

Confirm Command line before running: Select this option to display a
window describing the executable to be run and the parameters which will be
passed, just before the assembler/compiler is run. This gives you the option to
cancel the assemble/compile, continue as described, or modify parameters
before continuing. If you do not select this option, the assembler/compiler will
be run without prompting you to confirm parameters.

Save all files before running: Select this option to save all open files to disk
before running the executable. This is important since external programs that
must read the edit file read only the last version saved to disk. In generdl,
always select this option.

Wait for program completion: Select this option to have the WinIDE editor
disable itself until the executable terminates. If you do not select this option,
the editor starts the compiler, and allows Windows to manage the program.

4.10.6 Setup Fonts

Select the Setup Fonts . . . option in the Environment menu to open the Setup Fonts dialog
(Figure 4-18) to change font options in the editor.

- |

E
125 H e
Ir“m [BalbYgdr |
Cakca
e (R
[ensem -]

Figure 4-18. Setup Fonts Dialog

* Font: The Font text box displays the name of the current font. To change the current
font, select another font name from the Font list. Use the scroll arrows if necessary to
view al the font choices.

* Font Style: The Font Style text box displays the name of the current font style. To
change the current font style, select another font style name from the Front Style list.

* Size: The Sze text box displays the current font size. To change the size, enter a new
number in the text box or choose afont size from the list.

M68ICS05POM/D

4-29

WinIDE USER INTERFACE @ MOTOROLA

Effects: Toggle special font effects:

— Strikeout: Choose this option to produce a horizontal strikethrough line in the
selected text

— Underline: Choose this option to produce a horizontal underscore line below
the selected text

» Color: Choose the text color from the dropdown list box. Click on the downward
pointing arrow to display the Color list. Use the scrolling arrows to view all of the
choices, if necessary.

» Sample: Asyou choose Font options, an example of the text that will result is shown
in the Sample area.

» Script: If you have installed multilingual support, use this option to choose a non-
western script.

4.11 WinIDE SEARCH OPTIONS

This section describes the WinIDE Search menu options for specifying search criteria and
entering aline number to go to in asourcefile.

To perform a search operation, click once on the Search menu to open the menu (Figure 4-19).
Click on the option to execute.

Find... Cti+F
Beplace.. Chl+R
Eidpest 3

Gotoline...

Figure 4-19. Search Menu

4-30 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

4111 Find. ..

Choose the Find option from the Search menu to open the Find dialog (Figure 4-20). In the Find

what: box, enter the string to search for. The search will be performed in the active WinIDE
editor source window.

Find | x|
Find what. ||

I Match whele word only Direction Cancel |
I Match case CUp & Down

Figure 4-20. Find Dialog

Enter the search string and choose from the following options to refine your search:

* Match Whole Word Only: choose this option to limit the search to whole "words’
and not character strings that are part of alonger word or string.

* Match Case: choose this option to perform a case sensitive search, that is, to find
words with a specific uppercase and/or lowercase arrangement.

» Direction: Up/Down: Click on an option to direct the search:

— Choose the Down option to direct the search from the current cursor position
in the text to the end or "bottom"” of the file.

— Choose the Up option to direct the search from the current position in the text
to the beginning or "top" of thefile.

Press the Find Next button to start the search.

NOTE

The Find window is modeless and can remain open, allowing you
to interact with either the Find dialog or the source window.

Alternatives: Press Ctrl + F. Thisis the keyboard equivaent to selecting the Search - Find . . .
menu option.

M68ICS05POM/D 4-31

WinIDE USER INTERFACE @ MOTOROLA

4.11.2 Replace. ..

Select the Replace . . . option to open the Replace dialog (Figure 4-21) to search for and
substitute text in the active source window.

Find what: Ireadeed Eind Mext

Replace with: I Eeplace

Fieplace all
I Match whole waord anly

Cancel

il

I Match case

Figure 4-21. Replace Dialog

In the Find what text box, enter the text string to find; in the Replace with text box, enter the text
string to replace it with. Refine the search using the Match whole word only or Match case
options.

* Match Whole Word Only: choose this option to limit the search to whole "words’
and not character strings that are part of alonger word or string

* Match Case: choose this option to perform a case sensitive search, that is, to find
words with a specific uppercase and/or |lowercase arrangement.

Press the Cancel button to close the Replace dialog.

Alternatives: Press Ctrl + R. Thisisthe keyboard equivalent to selecting the Sear ch - Replace .
.. menu option.

4.11.3 Find Next

Select the Find Next option from the Search menu to find the next occurrence of the previous
search string without displaying the Find dialog.

Alternatives. Press F3. This is the keyboard equivalent to selecting the Search - Find Next
menu option.

4-32 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

4114 GotolLine...

Select the Go to Line . . . option from the Search menu to open the Go to Line Number dialog
(Figure 4-22). You may note line numbers in the Status Bar and use the dialog to navigate
between points in the text.

Go to Line Humber x|
Enter Line Mumber (1 to 15]
[+ |
|/ 0K | | x Cancel |

Figure 4-22. Go To Line Number Dialog

The dialog instruction includes the range of line numbers available in the active window. Enter
the Line Number you want to go to, and press the OK button.

4.12 WinIDE WINDOW OPTIONS

This section describes the WinIDE Window menu options for managing the arrangement of open
client windows in the main WinIDE window.

To perform a Window operation, click once on the Window menu to open the menu (Figure 4-23).
Click on the option to execute.

Loaocude

I

frranges bueaa
Vrarmze 51

Sol

1 O-NFEAICH [P IS eI WCHARGE S5 W
¥ §DAPENICH [P E [DHARTRE A5
2 0 APEAMICA [P M DS PLEY AR W

4 [-WFEMICH DS de I DE WE E PRI 250

Figure 4-23. The Window Menu

M68ICS05POM/D 4-33

WinIDE USER INTERFACE @ MOTOROLA

4.12.1 Cascade

Select the Cascade option from the Window menu to arrange the open source windows in
overlapping or "cascaded" style (Figure 4-24), like fanned cards. In this arrangement, open source
windows are all set to the same size and shape, one overlapping the other from the upper left
hand to the lower right hand corner of the WinIDE main window, with their title bars visible.

Hal B smrrredd el
L Ak W B
Al B, T R

Figure 4-24. Winl DE with Subordinate Windows Cascaded

To choose a window from the cascaded display, click on its title bar. This moves the selected
window to the top of the stack, and makesit the active window.

4122 Tile

Select the Tile option from the Window menu to arrange the open source windows in tiled
fashion (Figure 4-25). You will be able to see the entire window border for each, although not
necessarily the window’s entire contents.

B PR
migr wiil b ey o e

will vharge fue i
Flaimi dida Gade clilles

BT - displap
HIELIH

Auy 4

I Laiai TH T 1 B W =

Figure 4-25. Winl DE with Subordinate Windows Tiled

If the contents of a source window cannot be displayed in their entirety, use the scroll bars.
Thetiled arrangement is practical to use when cutting and pasting from one window to another.

4-34 M68ICS05POM/D

@ MOTOROLA WinIDE USER INTERFACE

4.12.3 Arrangelcons

Select the Arrange Icons option from the Window menu to rearrange the icons of minimized
windows into columns and rows at the bottom of the WinIDE main window (Figure 4-26).

FITFLAY - dlsplags BTk LEfses deom ral 10@STE i
DESLISES sred DISLIMES

[S - L1 &

dliplay equ -

11 .4 i, perke meake 'e” high

TS T | By o Iwd

Figure 4-26. WinlDE
with One Source Window Displayed and Remaining Windows Minimized

4.12.4 MinimizeAll

Select the Minimize All option from the Window menu to minimize all open source windows and
display them asicons at the bottom of the WinIDE main window (Figure 4-27).

N IDE - [Mo Project]

File

AlZls| (=[] [o|wlals]

Edit Ernvironment Search 'window Help

. DAPEML.. [EI=IFT

| 1:1 | | Total: 119 | Top: 1 | | Insert &

Figure4-27. The WinI DE Editor with Subordinate Windows Minimized

M68ICS05POM/D 4-35

WinIDE USER INTERFACE @ MOTOROLA

4125 Split

Select the Split option from the Window menu to divide the active source window into two or
more separate panes, each capable of displaying a different view of the same file. To toggle the
split window view, click on the Split option. A check mark appears beside the option when the
split view isin effect.

Adjust the relative size of the panes by dragging the split bar, a double horizontal line separating
the panes. Position the pointer over the split bar until it changes to the split pointer (Figure 4-28).

Syariosn yues @ ocoui jre wbses i
Split Pointer

Split Bar

1118 dpkn ran thet mees bes

Figure 4-28. Split Pointer and Bar

4-36 M68ICS05POM/D

@ MOTOROLA ASSEMBLER INTERFACE

CHAPTERS
ASSEMBLER INTERFACE

5.1 OVERVIEW

This chapter describes the operation of the CASMO5W assembler, including methods for
interfacing with the assembler from the WIinIDE, setting assembler options and directives,
generating and using output files and formats, and understanding assembler-generated error

MEeSSages.

In order to be used in the target microcontroller CPU, the source code for your program must be
converted from its mnemonic codes to the machine code that the target CPU can execute. The
CASM assembler program accomplishes this by reading the source code mnemonics and
assembling an object code file that can be programmed into the memory of the target
microcontroller. Depending on the parameters that you specify for the assembler, other
supporting files can be produced that are helpful in the debugging process.

When you click on the Assemble/Compile file button in the WinIDE, the CASM cross assembler
Is activated to process the active file in the WinIDE main window according to the parameters
you have entered. In addition to two kinds of object code files, you may choose to have the
assembler produce .MAP and/or .LST filesaswell.

Listing files show the original source code, or mnemonics, including comments, as well as the
object code translation. You can use this listing during the debugging phase of the development
project. It also provides a basis for documenting the program.

M68ICS05POM/D 5-1

ASSEMBLER INTERFACE @ MOTOROLA

5.2 CASMO5W ASSEMBLER USER INTERFACE
The assembler interface consists of a window that appears briefly in the WinIDE main window
during assembly. This window (Figure 5-1) contains information about the file being assembled:
* Main File: the path and filename of the main file being assembled
* Current File: the path and filename of the current file being assembled
» Status: the assembler status as the assembly proceeds
» Current Line: the current line position of the assembler
* Total Lines: the total number of linesin the file being assembled

i WIN IDE - [No Project] =] =]
File Edt Emnvironment Search Window Help

(& 27| [«[m]e] [omlae]

i DAPEMICROASAMPLE ~1\DISPLAY ASM =13
.page -

DISPLAY - displays both lines from ram locat

——— BT T RICA

* % Kk %

Main File : ...\SAMPLE~-1'DISPLAY.ASM

display equ *

Current File : ..\SAMPLE~T\DISPLAY.ASM
bset 8,portc

Status: Pass ? : Assembling ‘

[EXECUTABLE] Current Line : 160 | Total Lines: 160

Ao

Lzzemble Compile File - Hotkey Fd

oo py| S| BB 9| plalala|alalalalalals|& & rom

Figure5-1. WinIDE
with CASM05W Assembler Window Displayed

5-2 M68ICS05POM/D

@ MOTOROLA ASSEMBLER INTERFACE

You can pass parameters to the assembler by modifying the command line in the Program Item
properties in Windows, as shown in Figure 5-2.

Shortcut to Casm05w Properties EHE

General Shortcut |

Shortcut to Casm05w

Bl
]

Target type: Application
Target location: CAS kW

RPN I FIE] LG M N CASMOSW.EXE G LD Enter command line
param eters

Start in: ID:'\PEMICHD\D’-‘-.SMW

Shartcut key: INone

Bun: I Marmal window j

Find Target... | Qhangelcon...l

QK I Cancel | Apply |

Figure 5-2. Windows 95 Program Item Property Sheet
(Shortcut Property for CASM05W .EXE)

5.2.1 Passing Command Line Parametersto the Assembler in Windows 3.x

To enter parameters for the CASMO5W assembler in Windows 3.x:
1. Inthe Windows Program Manager, select the CASMW icon.

2. Choose the Properties option from the Program Manager File menu (or type ALT F
+ P).

3. Inthe Program Item Properties dialog box enter the Command Line information. The
command line specifies the command that will execute to start the program. In
general, use the path to the program and its executable file name as the command line
entry. You may also add optional command-line switches or parameters and the name
of a specific fileto run.

M68ICS05POM/D 5-3

ASSEMBLER INTERFACE @ MOTOROLA

5.2.2 Passing Command Line Parametersto the Assembler in Windows 95

To enter parameters for the CASMO05W assembler in Windows 95:

1. If the program is not running, right-click its icon on the Windows desktop, or its
shortcut entry in a folder or Windows Explorer window to open the Shortcut
Properties sheet (Figure 5-2).

In the Target textbox, enter the CASM0O5W command line parameters.
If necessary, edit the pathname in the Start in text box.
4. Choose the window type in which to run the assembler:

¢ Choose Normal to run the assembler in a standard CASMO5W window
(Figure 5-3).

¢ Choose Minimized to run the assembler in a minimized CASMO5W window.

* Choose Maximized to run the assembler in a maximized CASMO5W window.

T N - |
Ca R T R
FEE Bl om megret=s Sr e b

Figure 5-3. CASM05W for Windows Assembler Parameters

5.3 ASSEMBLER PARAMETERS

You may configure the CASMO5W assembler using the following parameters in the Windows
command line.

If you specify multiple parameters, separate them by spaces. Y ou can enter the parameters in any
order. All parameters default to off.

* Filename: Required parameter specifying the pathname and filename of the
CASMO5W assembler executable

* S Optional parameter to general Motorola .S19 S-Record object file
e L: Optional parameter to general an .LST listing file

5-4 M68ICS05POM/D

@ MOTOROLA ASSEMBLER INTERFACE

* D: Optional parameter to generate P& E .MAP debugging file
* H: Optiona parameter to generate Intel HEX object file

e C: Optional parameter to show cycle countsin listing file

e M: Optional parameter to expand MACROS islisting file

I: Optional parameter to expand INCLUDE filesin listing file

e Q: Optional parameter to suppress screen writes except errors

Example
C. \ P&E\ CASM)5#. EXE MYFILE S L D

5.4 ASSEMBLER OUTPUTS

5.4.1 Object Files

If you specify an object file in the command-line in the Program Item Properties in Windows,
using the S or H parameters, the object file is created during assembly. The object file has the
same name as the file being assembled, with the extension .HEX or .S19, depending on the
Specification given:
* Motorola uses the S-Record 8-bit object code file format for object files. For more
information, see Appendix A: S-Record Information.

» .HEX istheIntel 8-bit object code format.

In either case, the object code file produced by the CASMO5W assembler is atext file containing
numbers that represent the binary opcodes and data of the assembled program. This object code
file can be sent to the MCU using a programmer or bootstrap program, at which time it is
converted to the binary format required by the target CPU.

The object filename depends on the choice made in the command line of the Windows Program
Item Properties. By default, the object filename is that of the file being assembled, with the
proper object file format extensions. An existing file with the same name will be overwritten.

5.4.2 Map Files

If you specify a map file using the D parameter, the P& E Debug .MAP file is created during the
assembly. P& E Microcomputer products (such as the MMDS and the MMEVS) use these map
files during the source-level debugging process.

Map files contain the directory path information under which they are created, and cannot,
therefore, be moved to a new directory. If you must use the map file from a different directory,

M68ICS05POM/D 5-5

ASSEMBLER INTERFACE @ MOTOROLA

place the file in the new directory and reassemble, using the map file option D in the Windows
command line.

5.4.3 Listing Files

If you specify alisting file using the L parameter in the Windows command line, a file with the
same name as the file being assembled and the extension LST can be produced by the assembler.
This file serves as a program listing showing the binary numbers that the CPU needs, alongside
the assembly language statements from the source code.

For more information about using the assembler listing directives, see the summary of Assembler
Directivesin Table 5-2, beginning in paragraph 5-6.

5.4.4 Filesfrom Other Assemblers

It is possible to use files produced by another assembler with the CASMO5W assembler,
providing they are properly prepared before using. To prepare a source file from a third-party
assembler for use with the CASMO5W, follow these steps:

1. Precede al comments by a semicolon.

2. Using the WinIDE (or other editor) globa search and replace command, change any
assembler-specific directives, listing directives, pseudo operations, etc., as required to
create a file which is compatible with the CASMO5W. Remember that assembler
directives must begin with the characters $, / , . , or #, and must begin in column 1.

3. If necessary, use the BASE directive to change the default base for the operands
(CASMO5W defaults to hexadecimal base).

5.5 ASSEMBLER OPTIONS

The CASMO5W assembler supports all Motorola opcode mnemonics in the command set. For
descriptions of the debugging commands, see Chapter 7, ICSO5PW Debugging Command Set.

NOTE

Opcodes mnemonics cannot start in column one. If a label begins
the line, there must be at least one space between the label and the
opcode.

5-6 M68ICS05POM/D

@ MOTOROLA ASSEMBLER INTERFACE

5.5.1 Operandsand Constants

Operands are addresses, labels, or constants, as defined by the opcode. Assembly-time arithmetic
is alowed within operands. Such arithmetic may use these operations:

multiplication

division

addition

subtraction

left shift

right shift

remainder after division
bitwise and

bitwise or

bitwise xor

+ =~ *

>— RV A

Operator precedence follows algebraic rules. You may use parentheses to alter precedence. If
your expression contains more than one operator, parenthesis, or embedded space, you must put
the entire expression inside braces ({ }).

jnp start ;start is a previously defined |abel
jmp start+3 ;junmp to location start + 3
jmp (start > 2) ;junp to location start divided by 4

Constants are specific numbers in assembly-language commands. The default base for constants
Is hexadecimal, but you may change the default using the Change Base Address dialogs for the
Memory and Code windows. To temporarily override the default base, use either the appropriate
prefix or suffix (Table 5-1), but not both.

The assembler also accepts ASCII constants. Specify an ASCII constant by enclosing it in single
or double quotes. A character ASCII constant has an equivalent value: ‘A’ is the same as 41H.
An example of a string constant is:

db “this is a string”

Table 5-1. Change Base Pr efixes/Suffixes

Base Prefix = Suffix
2 % Q
8 @ O
10 ! T
16 H

M68ICS05POM/D 5-7

ASSEMBLER INTERFACE @ MOTOROLA

5.5.2 Comments

Use semicolons to delineate comments. A comment may start in any column and runs until the
end of itsline. Additionally, if any line has an asterisk (*) or semicolon (;) in column 1, the entire
lineis acomment.

5.6 ASSEMBLER DIRECTIVES

Assembler directives are keywords that control the progress and the modes of the CASMO05W
assembler. To invoke an assembler directive, enter a/, #, or $ as the first character of a line.
Enter the directive immediately after thisinitial character, along with the appropriate parameters
values.

Directives supported by the assembler vary according to manufacturer. Table 5-2 summarizes the
CASMO5W assembler directives. A caret (") indicates that a parameter value must follow the
directive. Note also that a space must separate a directive and its parameter value.

5.6.1 BASE

The BASE assembler directive changes the default base of the current file. The parameter
specified must be in the current base or have a base qualifier (prefix or suffix). The next base
remainsin effect until the end of thefile, or until you enter another BASE directive.

The origina default base is hexadecimal, but you can change the default to binary, octal, or
decimal default bases instead. It is good practice to specify a base explicitly so that you are
always sure that base is currently in effect.

5.6.2 Cycle Adder

The CASMO5W assembler contains an internal counter for instruction cycles called the cycle
adder. Two assembler directives, CYCLE_ADDER ON and CYCLE _ADDER_OFF, control
this counter.

When the assembler encounters the CYCLE_ADDER_ON directive, it clears the cycle adder.
The cycle adder starts a running total of instruction cycles as subsequent instructions are
assembled. For instructions that have variables numbers of instruction cycles, the cycle adder
uses the smallest number.

When the assembler encounters the CY CLE_ADDER_OFF directive, it writes the current cycle-
adder value to the .L ST file and disables the cycle adder.

5-8 M68ICS05POM/D

@ MOTOROLA ASSEMBLER INTERFACE

Table5-2. Assembler Directives and Conditional Assembler Directives

Directive Action

BASE » Change the default input base to binary, octal, decimal, or
hexadecimal

CYCLE_ADDER_OFF Stop accumulating instruction cycles and print the total

CYCLE_ADDER_ON Start accumulating instruction cycles

INCLUDE » Include specified file in source code

MACRO # Create a macro

MACROEND End a macro definition

RAMEND A Set logical end of RAM space

RAMSTART # Set default for ramloc pseudo operation
Conditional Directive Action

SET Sets the value of its parameter to true.

Maximum number of SETs is 25.

SETNOT Sets the value of its parameter to false.

Maximum number of SETNOTS is 25.

IF or IFNOT Determines the block of code to be used for conditional assembly;
the code between the IF and ENDIF will be assembled if the given
parameter value is true; the code between IFNOT and ENDIF will be
assembled if the parameter value is false.

ELSEIF Provides alternative to ENDIF when precedes ENDIF; for example, if
the parameter value is true, the code between IF and ELSEIF will be
assembled, but the code between ELSEIF and ENDIF will not be
assembled. If the parameter value is false, code between IF and
ELSEIF will not be assembled, but code between ELSEIF and
ENDIF will be assembled.

ELSEIF gives the same alternative arrangement to a directive
sequence that begins with IFNOT.

ENDIF See IF, IFNOT, ELSEIF

M68ICS05POM/D 5-9

ASSEMBLER INTERFACE @ MOTOROLA

5.6.3 Conditional Assembly

The CASMO5W assembler allows you to specify blocks of code to be assembled only upon
certain conditions. To set up such conditional assembly procedures, use the conditional
assembler directives summarized in Table 5.2.

Example of Conditional Assembly Dir ectives

$SET debug ;sets debug = true
$SETNOT t est rsets test = fal se
nop ; al ways assenbl es
nop ; al ways assenbl es
$I F debug ;i f debug = true
jmp start ; assenbl es

$ELSEI F ;i f debug = fal se
jmp end ; does not assenbl e
$ENDI F

nop ; al ways assenbl es
nop ; al ways assenbl es
$IF test if test = true
jmp test ; does not assenbl e
$ENDI F

5.6.4 INCLUDE

If the CASMO5W assembler encounters the INCLUDE directive, it takes source code from the
specified file and continues until it encounters another INCLUDE directive or until it reaches the
end of the main file. When the assembler reaches the end of the main file, it continues taking
source code from the file that contained the include directive.

The file specification of the INCLUDE directive must be in either single or double quotes. If the
fileis not in the current directory, the specification should also include the full path name as well
asthefilename.

Y ou may nest included to a maximum depth of 10, that is, each included file may contain up to 10
additional included files.

Examples
$INCLUDE “INIT.ASM”

$INCLUDE “C:\project\init.asm*"

5-10 M68ICS05POM/D

@ MOTOROLA ASSEMBLER INTERFACE

5.6.5 MACRO

A macro is a named block of text to be assembled. Similar in some ways to an included file, the
macro allows labels and parameter values.

The MACRO directive begins the macro definition. The name of the macro is the parameter
value for the MACRO direction. All subsequent code, until the assembler encounters the
MACROEND directive, is considered the macro definition.

No assembler directives may be used within a macro, no does the definition require parameter
names. Instead, the macro definition includes the sequential indicators %n for the n™ parameter
values of the macro call. The assembler will ignore parameter values on the MACRO directive
line, so such values may be helpful for internal documentation.

Example
This macro example illustrates a macro that divides the accumulator value by 4:
$MACRO di vi de_by_ 4 ;starts macro definition
asr a ; di vides accunul ator by 2
asr a ; di vides quotient by 2
$MACRCEND ;ends macro definition
This macro exampleillustrates a macro that creates atime delay:
$MACRO del ay count
| daa #3$01
| oop: deca
bne | oop
$MACROEND

In this macro, the CASMO5W assembler ignores the parameter count on the MACRO directive
line. The parameter count merely indicates the role of the parameter value passed to the macro.
That value is substituted for the sequential indicator %1. The first time this macro is called, the
CASMO5W assembler changes the label loop, on lines 3 and 4, to loop: 0001. If the calling line

del ay 100t
invokes this macro, the loop would occur 100 times. The suffix t represents the decimal base.

The CASMO5W assembler ignores extra parameter values sent to a macro. If the macro does not
receive enough parameter values, the assembler issues an error message.

Labels change automatically each time they are used. Labels used within macros may not be
longer than 10 characters, because the assembler appends a four-digit hexadecimal number to the
label to insure label uniqueness.

M68ICS05POM/D 5-11

ASSEMBLER INTERFACE @ MOTOROLA

Although code may not jump into a macro, it may jump out of a macro. Macros cannot be
forward-referenced.

5.7 LISTING DIRECTIVES

List directives are source-code keywords that control output to the LST listing file. These
directives pertain only to viewing the source-code output; the directives, which may be
interspersed anywhere in source code, do not affect the actual code assembled. Table 5-4
summarizes the listing directives.

Table5-3. Listing Directives

Directive Action

eject or page Begins a new page

header " Specifies a header on listing pages; the header can be defined only once; the
default header is blank; the header string is entered in quotes.

list Turns on the .Ist file output.

nolist Turns off the .Ist file output. This directive is the counterpart of the list
directive; at the end of a file, this directive keeps the symbol-table from being
listed.

pagelength * | Sets the length of the page; the default parameter value is 166 lines (! =
decimal)

pagewidth » Sets the width of the output, word wrapping additional text; the default
parameter value is 160 columns (! = decimal)f.

subheader v Makes the string specified in quotes (double or single) a subheader on the
listing pages; the subheader takes effect on the next page.

Note: the caret (") character following a directive indicates a mandatory parameter value that
must be supplied.

5.7.1 Listing Files

If alisting fileis requested using the L parameter in the command line of the Windows Program
Item Properties, or the Output Listing File option is checked in the Assembler/Compiler tab in
the Environment Settings dialog, thelisting file (.LST) is created during the assembly.

Thislisting file has the same name as the file being assembled, but with the extension .LST. Any
existing file with the same name will be overwritten.

5-12 M68ICS05POM/D

@ MOTOROLA ASSEMBLER INTERFACE

The listing file has the following format (file fields shown in the example are described in Table
5-4):

AAAA [CC VWWWV LLLL Source Code
Example:
0202 [05] 1608 37 bset 3,tcsr ; cl ear

timer overflow flag

Thelisting file fields are described in Table 5-4.

Table5-4. Listing File Fields

Field Field
Contents Description
AAAA The first field contains four hexadecimal digits indicating the address of the
command in the target processor (MCU) memory. The assembler generates this
field.
[CC The second field indicates the number of machine cycles used by the opcode. .

The assembler generates this field.

Note that this value appears only if the cycle counter (Cycle Cntr) was turned on
before assembly.

Also note that the CC value, which always appears in brackets, is a decimal
value. If a command has several possible cycle counts and the assembler cannot
determine the actual number, the CC field shows the best case (lowest number).
An example of a command that may have several possible counts is a branch
command.

WWWW | The third field contains a label consisting of four hexadecimal digits indicating the
values placed into that memory address (and, possibly, the next several memory
addresses). You may refer to this label in other commands. The size of this field
depends on the actual opcode. The assembler derives this field from the source

code.
LLLL The fourth field may contain up to four digits indicating the line count. The
assembler derives this field from the source code.
Source The last field contains the actual source code from the source code file.
code
Listing The listing table provides a summary of every label and its value, displayed in
table table format at the end of each listing file.

M68ICS05POM/D 5-13

ASSEMBLER INTERFACE @ MOTOROLA

Example Listing Table

MAIN1.ASM Assembled with CASMW 2/27/97 12:06:39 PM PAGE 2
0000 26 porta equ $0000
0000 27 portb equ $0001
0000 28 portc equ $0002
0000 29 portd equ $0003
0000 30 ddra equ $0004
0000 31 ddrb equ $0005
0000 32 ddrc equ $0006
0000 33 ddrd equ $0007
Syﬁbe'TabIe
DONSCN 08DD
DONSCNL 08EE
OPTSC1 0866
OPTSC2 0877
OPTSC3 0888

5.7.2 Labels

As you write the program code, you will not necessarily know the addresses where commands
will be located. The assembler solves this problem using a system of labels, providing you with a
convenient way to identify specific points in the program without knowing the exact addresses.
The assembler later converts these mnemonic labels into specific memory addresses and even
calculates the offsets for branch commandsin order for the CPU to use them.

Labels within macros must not exceed 10 characters in length.

Examples:

Label :

Thi sl sALabel :

Loop_ 1

This | abel is much _too_ | ong:

The assembler would truncate the last example to 16 characters.

5-14 M68ICS05POM/D

@ MOTOROLA ASSEMBLER INTERFACE

5.8 PSEUDO OPERATIONS

The CASMO5W assembler also allows pseudo operations (in place of opcode mnemonics). The
operations that the assembler allows are summarized in Table 5-5.

Table 5-5. Pseudo Operations Allowed by the CASM 05W

Pseudo Op Code Action
equ Associates a binary value with a label.
fcb m Defines byte storage, where m = label, number, or string. Strings
or generate ASCII code for multiple bytes; number and label parameters
db m receive single bytes.

Separate multiple parameters with commas.

fdb n Defines word storage, where n = label, number, or string. Two bytes
or are generated for each number or label.
dwn

Separate multiple parameters with commas.

orgn Sets the origin to the value of the number or label n. No forward
references of n are allowed.

rmbnordsn Defines storage, reserving n bytes, where n = number or label; no
forward references of n are allowed.

5.8.1 Equate (EQU)

The equate directive associates a binary value with a label. The value may be either an 8-bit
value or a 16-bit address value. This directive does not generate any object code.

During the assembly process, the assembler must keep a cross-reference list where it stores the
binary equivalent of each label. When alabel appears in the source program, the assembler looks
in this cross-reference table to find the binary equivalent. Each EQU directive generates an entry
in this cross-reference table.

An assembler reads the source program twice. On the first pass, the assembler just counts bytes
of object code and internally builds the cross-reference table. On the second pass, the assembler
generates the listing file and/or the S-record object file, as specified in the command line
parameters for the assembler. This two-pass arrangement allows the programmer to reference
labels that are defined later in the program.

M68ICS05POM/D 5-15

ASSEMBLER INTERFACE @ MOTOROLA

EQU directives should appear near the beginning of a program, before their labels are used by
other program statements. If the assembler encounters a label before it has been defined, the
assembler has no choice but to assume the worse case, and assign the label a 16-bit address
value. This would cause the extended addressing mode to be used in places where the more
efficient direct addressing mode could have been used. In other cases, the indexed 16-bit offset
addressing mode may be used where a more efficient 8-bit or no offset indexed command could
have been used.

5.8.2 Form Constant Byte (FCB)

The arguments for this assembler directive are labels or numbers (separated by commas) that the
assembler can convert into a single byte of data. Each byte specified by the FCB directive
generates a byte of machine code in the object code file. Use FCB directives to define constants
in aprogram.

5.8.3 Form Double Byte (FDB)

The arguments for this assembler directive are labels or numbers (separated by commas) that the
assembler can convert into 16-bit data values. Each argument specified in an FDB directive
generates two bytes of machine code in the object code file.

5.8.4 Originate (ORG)

The originate directive sets the location counter for the assembler. The location counter keeps
track of the address where the next byte of machine code will be stored in memory.

As the assembler trandates program statements into machine code commands and data, it
advances the |ocation counter to point to the next available memory location.

Every program has at least one ORG directive, to establish the program’s starting place. Most
complete programs will also have a second ORG directive near the end of the program to set the
location counter to the address where the reset and interrupt vectors are located. Y ou must always
specify the reset vector. It is good practice to also specify interrupt vectors, even if you do not
expect to use interrupts.

5.8.5 Reserve Memory Byte (RMB)
Use this assembler directive to set aside space in RAM for program variables. The RMB

directive does not generate any object code, but it normally generates an entry in the assembler’s
internal cross-reference table.

5-16 M68ICS05POM/D

@ MOTOROLA

ASSEMBLER INTERFACE

5.9 ASSEMBLER ERROR MESSAGES

You can configure the CASMO5W assembler to highlight any errors that it encounters during
assembly, and display an error message on the prompt line. Table 56 summarizes these

messages.
Table 5-6. Assembler Error M essages
Message Probable Cause Corrective Action
Conditional The variable in the IF or IFNOT Declare the variable using the
assembly variable = statement has not been declared via s SET or SETNOT directive.
not found SET or SETNOT directive.

Duplicate label

The label in the highlighted line already
has been used.

Change the label to one not
used already.

Error writing .LST
or .MAP file—
check disk space

Insufficient disk space or other reason
prevents creation of an .LST or .MAP
file.

Make sure there is sufficient disk
space. Make sure that your
CONFIG.SYS file lets multiple
files to be open at the same time
(see your DOS or Windows
manual for commands).

Error writing
object file—check
disk space

Insufficient disk space or other reason
prevents creation of an object file.

Make sure there is sufficient disk
space. Make sure your
CONFIG.SYS file allows multiple
files to be open at the same time
(see your DOS or Windows
manual for commands).

Include directives
nested too deep

Includes are nested 11 or more levels
deep.

Nest includes no more than 10
levels deep.

INCLUDE file not
found

Assembler could not find the file
specified in the INCLUDE directive

Make sure that quotes enclose
the file name to be included; if
necessary, specify the full path
name as well.

Invalid base value

Value inconsistent with current default
base (binary, octal, decimal, or
hexadecimal)

use a qualifier prefix or suffix for
the value, or change the default
base.

Invalid opcode,
too long

The opcode on the highlighted line is
wrong.

Correct the opcode.

MACRO label too
long

A label in the macro has 11 or more
characters.

Change the label to have no
more than 10 characters,

MACRO
parameter error

The macro did not receive sufficient
parameter values.

Send sufficient parameter values
to the macro.

M68ICS05POM/D

5-17

ASSEMBLER INTERFACE

@ MOTOROLA

Table 5-6. Assembler Error M essages (continued)

Message

Probable Cause

Corrective Action

Out of memory

The assembler ran out of system
memory

Create a file that consists only of
an INCLUDE directive, which
specifies your primary file.
Assembling this file leaves the
maximum memory available to
the assembler.

Parameter invalid,
too large, missing
or out of range

Operand field of the highlighted line has
an invalid number representation. Or
the parameter value evaluates to a
number too large for memory space
allocated to the command.

Correct the representation or
change the parameter value.

Too many
conditional
assembly
variables

There are 26 or more conditional
variables.

Limit conditional variables to 25
or fewer.

Too many labels

The assembler ran out of system
memory.

Create a file that consists only of
an INCLUDE directive, which
specifies your primary file.
Assembling this file leaves the
maximum memory available to
the assembler.

Undefined label

The label parameter in the highlighted
line has not been declared.

Declare the label.

Unrecognized

The highlighted opcode is unknown or

Correct the opcode or make it

operation is inconsistent with the number and type = consistent with parameters.
of parameters.
‘} not found A mathematical expression is missing Insert the closing brace.

its closing brace.

5-18

M68ICS05POM/D

@ MOTOROLA ASSEMBLER INTERFACE

5.10 USING FILESFROM OTHER ASSEMBLERS

To prepare a source file made by another assembler with the CASMO05W, follow these steps:

1. Divide large files into smaller files no larger than 75K. Typicaly, use one file for
system variables and EQUates, another file for 1/0 routines. The main file should be
the one called. Remember that include filenames must be in quotes and must contain
thefile extensions.

2. Make sure al commentsin the source file are preceded by a semicolon.

3. Use the global find-and-replace operation in the editor to change any assembler
directives, listing directives, and/or pseudo operations, if they exist in the source code.
Remember that assembler directives must begin with the character $, /,., or #, and
must start in column 1.

4. If necessary, use the BASE directive to change the default base for operands
(CASMO5W defaults to hexadecimal).

M68ICS05POM/D 5-19

ASSEMBLER INTERFACE @ MOTOROLA

5-20 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

CHAPTER 6
|CS05PW SIMULATOR USER INTERFACE

6.1 OVERVIEW

This chapter describes the in-circuit simulator user interface, toolbar buttons, windows, sub-
windows, messages, and menu options.

6.2 THE ICSO5PW IN-CIRCUIT SIMULATOR

The ICSO5PW.EXE is an in-circuit simulator for Motorola 6BHCO05P6 and P9 microcontrollers
that runs in Windows 3.x and Windows 95. The ICSO5PW can get inputs and outputs (1/0) for
the target device from an external pod, the M68ICSO5P board, that is attached to the host
computer. If you want to use actual inputs and outputs (I/0O) from your own target board, you
may attach the M68ICS05P board to your target board using the supplied extension cable.

The ICSO05PW in-circuit simulator software is the debugging component of a complete
development environment when used in conjunction with the WinlDE editing environment and
the CASMO5W command-line assembler.

6.2.1 1CSO5PW Simulation Speed

The ICS05PW is not a real-time debugger. The speed at which the simulator executes code is
much slower than the speed at which the actual processor can execute code. Therefore, if there
are any critical timing issues to be resolved, you should use an emulator for the HCO5P devices
instead of the ICSO5PW.

Alternately, you may simulate using the slow mode, then program an EPROM device to check
the full speed operation.

NOTE

An actual speed of 10KHz indicates that the simulator on your host
PC is running at the same speed as the real MCU with a 20-KHz
crystal (a divide-by-2 is attached to the internal oscillator output).
Typical valuesfor actual speed are 3to 50 KHz.

M68ICS05POM/D 6-1

SIMULATOR USER INTERFACE @ MOTOROLA

To calculate actual speed of the assembled code on the target MCU, you need a stopwatch and
some source code. Follow these steps:

1

Load your code using the LOAD command on the ICSO5PW Status Window
command line.

Set the program counter to the beginning of the routine for which you wish to
measure the speed.

Clear the cycle counter using the CYCLE (or CY) command with the O parameter,
then press Enter:

Ready your stopwatch.

4. Enter the GO or G command on the ICSO5PW Status Window command line.

Start the stopwatch and press the ENTER button simultaneously to begin code
execution.

After 10 seconds, simultaneously stop the watch and execution (the fastest way to
stop execution is to press the spacebar). Execution halts.

Now enter the CYCLES or CY command on the Status Window command line the
decimal value cycle count is displayed.

Divide the cycle count by 10. The result is the actual speed in KHz.

6.2.2 System Requirementsfor Running the | CSO5PW

The ICSO05PW runs under Windows 3.1 or Windows 95. There is a separate 32-bit version of the
ICS05PW software for Windows 95/NT available directly from P& E Microcomputer Systems.

Your host computer should have a minimum of 2 MB of RAM (system memory) available for
assembly processes, as well as sufficient disk space to store the files that the ICSO5PW creates.

6.2.3 File Typesand Formats

You can use a number of file types in conjunction with the ICSO5PW simulator. The following
topics describe the use and structure of each type.

6-2

Project Files: Project files store two types of information:

— Desktop information includes al the information stored concerning the files
that are currently open in the project. Whenever you save the project file,
WInIDE records information about each window open in the desktop,
including:

* Window size

e Window position

M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

* Window style (Maximized/Minimized/Normal)
* Markers currently set

— Environment Settings
o User settings

* WinIDE configuration parameters as specified in the Environment
Settings dialog tabs

When you open the project, or if the project is open when the WinIDE starts, files are
all opened with the settings stored in the project file.

* S19 (Object) Files: The ICSO5PW software accepts any standard Motorola S19 files
as input for smulation. S19 object files can be created by any HCO5 assembler (such
as CASMO5W), and contain the actual object code that is smulated by the ICSO5PW.
Specify the S19 files to use on the command line or load it using the LOAD command
in the ICSO5PW Status window.

— The object file has the same name as the file assembled, with the extension
HEX or .S19, and contains the actual assembled (or object) code to debug. If
you specify an object file in the environment settings, it is created during
assembly.

— The CASMW (and some other assemblers) product object files in the .S19
format. The Motorola S19 object code format is described in detail in
Appendix A. HEX files are the Intel 8-bit object code format.

* Map Files contain source level debugging information. To debug symbolic or source
code in the code window you must also load one or more P& E map-files. The *. MAP
source-level map file can be generated by specifying the map files option on the
command line when running the CASMW assembler, or loaded using the LOADMAP
command in the ICSO5PW Status window. If you specify a map file in the
environment settings, it is created during assembly.

NOTE

Map files contain directory information, so cannot be moved. To
place map files in another directory, move the map file to the new
directory and reassemble the file in the new directory so the new
map file will contain the correct directory information.

If you use a third party assembly language or C compiler, it must
be able to produce compatible source-level map files.

* Error Files contain assembly error information. The CASMW highlights any errors
that it encounters during the assembly, and displays the error message in the CASMW
window. Depending on the environment settings, the assembler may also open the file
in which the error was encountered, and create an error file with the assembly
filename and the .ERR extension.

M68ICS05POM/D 6-3

SIMULATOR USER INTERFACE @ MOTOROLA

6-4

Script Files are plain ASCII text files containing ICSO5PW simulator commands.
You may use any command in the ICSO5P command set in script files. Running the
script file then has the effect of entering the commands in it in the ICSO5PW
command line. You can create script files in the WinIDE editor, or you can use files
created by other text editors following these rules:

— Enter each command on its own line.
— Preface comments with a semi-colon.
— Use commands from the ICSO5PW command set and WAIT.

Listing Files display each line of source code and the resulting (assembled or
compiled) object code. Listing files show exactly how and where each code was
assembl ed.

— If you specify a listing file in the environment settings, it is created during
assembly. The listing file will have the same name as the file being assembled,
with the .LST extension, and will overwrite any previous file with the same
name.

— Listing files contains these fields in the following format:
AAAA [CC WWW W LLLL Source Code .

Where:

AAAA First four hexadecima digits are the address of the
command in the target processor memory.

[CC] The number of machine cycles used by the opcode. This

value, which always appears in brackets, is a decimal value.
If an instruction has several possible cycle counts (as would
be the case when the assembler encounters a branch
instruction) and the assembler cannot determine the actual
number of cycle counts, the CC field will show the best
case (lowest number).

VVVVVVVV Hexadecimal digits (the number of which depends on the
actual opcode) representing values put into that memory

address.
LLLL Line count.
Source code The actual source code

At the end of the listing file is the symbol table listing every label and its
value.

M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

* Log Filesare simple ASCII text files, sometimes called scratch pad files. The log file
records the sequence and content of commands executed, and the debugger responses
to the commands. You can view log files from within the WinIDE editor. The
ICSO5PW simulator createslog filesif the LOGFILE or LF command is active.

6.3 STARTING ICS05PW

You can start the ICSO5PW simulator by itself in standalone mode (with no inputs or outputs
from the target), or run it from within the WinIDE editor. You can aso modify the ICSO5PW
environment in WinlDE editor.

* Torun the smulator in standalone mode, double click the ICSO5PW icon using either
of these methods:

— In Windows 3.x, in the Program Manager, double click the ICSO5PW icon in
the ICSO5PW Program Group.

— In Windows 95, choose the ICSO5PW icon from the ICSO5PW group in the
Start menu.

* Torunthe simulator from the WinlDE editor, use either of these methods:
— Click the Debugger (EXEL) button on the WinIDE toolbar
— Pressthe F6 Hotkey

* To modify how the software starts from WinlDE editor:

1. From the WinIDE Environment menu, choose the Setup Environment option
to open the Environment Settings dial og.

2. Select the EXE1 Debugger tab heading (see Figure 4-17), if it isnot in already
on top, to set options for the ICSO5PW simulator. For more information about
the options in the tab, see paragraph 4.10.5.4.

After startup, the software will establish communication with the board at the given parameters
and the status bar will read Attempting to contact COM 1.

» If the ICSO5PW software can communicate with the pod through the seria port, the
status bar message reads, Contact with pod established.

M68ICS05POM/D 6-5

SIMULATOR USER INTERFACE @ MOTOROLA

» If the software is not able to connect with the board, the Can’t Contact Boardlialog
(Figure 6-1) appears.

| Comiimmaiiems MR

Fylers ane i g, sl (T e el

o 1w il

Hirll:rq.ﬂl‘-cﬂr-r-l-n'\---'ln-urusrm
[HETN R o w1 Hnds
i =] o | B L]
e =l !
i - COu?
e - cnus (LB T

| FIITHTE s-lul.u..-.m:-hw.-| INTT Applieion |

Figure 6-1. Can’'t Contact BoardDialog

If the communication parameters for the communications port and baud rate are incorrect in the
Can't Contact Board dialog, change them and then press the RETRY button. If the board is not
connected or you do not wish to use I/O from the board, then click the SIMULATION only
button. Otherwise, press the EXIT Application button.

When you start the ICSO5PW software for the first time, the Pick Device dialog will offer you the
choice of the P6 or P9 Device (chip). If you want to open this dialog and change the device later,
enter the CHIPMODE command in the ICSO5PW Status Window command line.

NOTE

If afile named STARTUP.05P exists in the current directory, the
WInIDE runs it as a macro file on startup. See the MACRO
command for more information.

6-6 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

6.4 ICSO5PW WINDOWS

The ICS05PW user interface consists of windows in which system and code information is
shown and into which the ICSO5PW command set can be entered (Figure 6-2).

e

==
-

S

e X

WD

BEE X

BLLE Bd

EHFH
ELF

=
A=
B=

LFREECI
e L1 anlalibalie
EELE &8 LLF-] L1 walmitialie
(=1] i1 aalalrbalis
FC vl LR L] L] waimibialie

—a re i ripuis

FTTYTTYYTTYTYYTYY
=

T
—
HEHEEH

S
LEEEERE

" *

Bk Bk Ak dETALLE
ARHHEHEa®s®HEH

ki
fraERENn

T |
Figure 6-2. The ICS05PW Windows Default Positions

The ICS05PW also displays these sub-windows when appropriate:
» Stack Window
» Trace Window
* Breakpoint Window
* Programmer Windows
* Register Block Window

6.5 CODE WINDOWS

The Code windows (Codel and Code2) can be set to display source code in either source or
disassembly modes. Code windows aso give visua positions of the current program counter
(PC) and all breakpoints within the source code. You can display both code windows
simultaneously. Each code window is independent: you can configure each window to display
different parts of your source code, or different assembly modes.

M68ICS05POM/D 6-7

SIMULATOR USER INTERFACE @ MOTOROLA

The Code Window Shortcut menu contains options for working in the code windows (Figure 6-3).

~. Code Window 2 : Disassembly | [O] =]

uninitialized

L' Ja101 bt uninitialized
81062 ht uninitialized
8103 b4 uninitialized
a104 b4 uninitialized
8185 XN uninitialized B

Figure 6-3. Code Window in Disassembly Mode
with Breakpoint Toggled

6.5.1 To Display the Code Windows Shortcut Menus

To display the Code 1 or Code 2 Windows Shortcut Menu (Figure 6-4), position the cursor in
either the Codel or Code2 window and click the right mouse button.

Togghe freah pond ot Ces
S FT o L
Djoii dobwrs o Cureea

S H v Bakhrrr
Sl mod Aackdiwin b P

Saplect Source Madus
Sl jasinTisesmubly ¥
Hele:

Figure 6-4. Code Window Shortcut Menu

6.5.2 Code Window Shortcut Menu Functions

The Code Window Shortcut Menu (Figure 6-4) offers these options:

* Toggle Breakpoint at Cursor: Choose this option to set or remove the breakpoint at
the current cursor location.

* Set PC at Cursor: Choose this option to set the Program Counter (PC) to the current
cursor location.

* Gotil Address at Cursor: Choose this option to execute the source code until the

Program Counter (PC) gets to the line at the current cursor location. When PC gets to
that point, execution stops.

6-8 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

Set Base Address. Choose this option to open the Window Base Address dialog
(Figure 6-5) and set the new address for the first code line in the Code Window.

Window Base Address [X]

Mew Address

I |
|\/ 0K | |x Cancel |

Figure 6-5. Window Base Address Dialog
Set Base Address to PC: Choose this option to set the Program Counter (PC) to the
address of the first line in the Code Window.

Select Source Module: Choose this option to select a source module (if a MAP file
has been loaded into memory).

Show Disassembly: Choose this option to display the Code window contents in
disassembly mode.

Show Sour ce/Disassembly: Choose this option to display the Code window contents
in both disassembly and source modes.

6.5.3 Code Window Keyboard Commands

Use these keys to navigate in the Code Windows:

Pressthe Up Arrow (1) key to scroll the Code Window contents up one line.

Press the Down Arrow (1) key to scroll the Code Window contents down one line.
Press the Home key to scroll to the Code Window's base address.

Press the End key to scroll to the Code Window's last address.

Press the Page Up key to scroll the Code Window up one page.

Press the Page Down key to scroll the Code Window down one page.

Press the F1 key to show the Help Contents topic.

Press the Escape (Esc) key to move the cursor to the command line of the Status
Window.

M68ICS05POM/D 6-9

SIMULATOR USER INTERFACE @ MOTOROLA

6.6 VARIABLESWINDOW

The Variables window (Figure 6-6) displays current variables during execution. Use the
Variables window shortcut menu to add or remove variables from the current list.

< Mariablez B =]

DDHB : 500

Add Y ariable
Delete Waniable
Clear &l

Help...

Figure 6-6. Variables Window
with Shortcut Menu

6.6.1 Displayingthe Variables Shortcut Menu

To display the Variables shortcut menu, position the cursor in the Variables window and click
the right mouse button.

6.6.2 VariablesWindow Shortcut Menu Options

The Variables Window Shortcut Menu offers these options for managing variables:

6-10

Add Variable: Choose this option to open the Add Variable dialog (Figure 6-7) to
add avariable or address to the current variable list. Select the variable type (size) and
base.

Veriable § heidveay | |1
Tvpw Hesm
* Hyin Husnchacirenl
Wi ~ Diciwal
7 Linnigaan T Dl
" Himeg 7 oy |
1
o Ok | K Corce | T Hea |!
1

Figure 6-7. Add Variable Dialog

Y ou may enter values for commands in the simulator as either labels (which you have
defined in the map file or with the SYMBOL command), or as nhumbers. You may

M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

specify the base in which variables are shown using the options in the Add Variable
dialog (Figure 6-7). The default number format for the ICSO5PW is hexadecimal.

To override the default base for any number, you may aso enter either a prefix or
suffix (but not both) shown in Table 6-1 in the command lines.

Table 6-1. Base Prefixes and Suffixes

Base Prefixes | Suffixes
16 ‘$ ‘H
10 1 T
8 ‘@’ ‘0’
2 ‘%’ ‘Q
Example
$FF = 1255 = @77 = 941111111 = 11111111Q = 3770 = 255T =
OFFH
NOTE

If the ™’ character is used as a parameter, the address of the cursor
in the code window will be used (if it pointsto valid object code).

>PC 100 Change PC address to address $100.

>N 1 Assign value 1 to CCR N bit.

>MM C0 100T Pl ace value 100 at | ocation $C0.

>BR END Set breakpoint at address of synbol END.

>PC * Set program counter at address pointed to
by cursor.

Use the Type options in the Add Variable dialog to choose a variable type: 8-hbit
bytes, 16-bit words, 32-bit longs, or ASCII strings.

» Delete Variable: Choose this option to remove the selected (highlighted) variable
from memory and from the current variable list.

» Clear All: Choose this option to clear al variablesin the current variable list.

6.6.3 Variable Window Keyboard Commands

Use these keys to navigate in the Variable Window:
* PressthelInsert key to add avariable.
» Pressthe Delete key to delete avariable.

M68ICS05POM/D 6-11

SIMULATOR USER INTERFACE @ MOTOROLA

* Pressthe Up Arrow (1) key to scroll the Variable Window up one variable.

* Pressthe Down Arrow (1) to scroll the Variable Window down one variable.
* Pressthe Home key to scroll the Variable Window to the first variable.

» Pressthe End key to scroll the Variable Window to the last variable.

* Pressthe Page Up key to scroll the Variable Window up one page.

» Pressthe Page Down key to scroll the Variable Window down one page.

* Pressthe F1 key to shows the Help Contents topics.

» Press the Escape (Esc) key to move the cursor to the command line of the Status
Window.

6.7 MEMORY WINDOW

Use the Memory Window (Figure 6-8) to view and modify the memory in the ICSO5PW. View
bytes by using the scrollbar on the right side of the window.
To modify a set of bytes:

1. Double click on the bytes to open the Modify Memory dialog for that address.

2. Enter the MM command in the command line of the Status Window.

L O KX A% A3 BE KR ..
F WK BB BE G0 NN BE & ... LIRS
IS E3 B3 EX XX 33 BE EX ...

WS OEX EE OGN oK BE OEE 8% ... | = Pl g WX gred RETH
FHE X3 33 EX XX 33 BE B ... | Sl . B i
W0 xw BE GG X NN OBE X ... i =

Base
Address

Figure 6-8. Memory Window
with Shortcut Menu
Use the options from the Memory Window Shortcut menu to perform these memory functions:

* Set Base Address: Choose this option to set the first memory address to display in
the Memory window.

» Show as HEX and ASCII: Choose this option to display memory map information
in both HEX and ASCII formats.

* Show asHEX Only: Choose this option to display memory map information in HEX
format only, alowing more bytes per row.
Use these keys to navigate in the Memory Window:
* Pressthe Up Arrow (1) to scroll the Memory Window up one line.
* Pressthe Down Arrow (1) to scroll the Memory Window down one line.
* Pressthe Home key to scroll the Memory Window to memory address $0000.

6-12 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

Press the End key to scroll the Memory Window to the last address in the memory
map.

Press the Page Up key to scroll the Memory Window up one page.

Press the Page Down key to scroll the Memory Window down one page.

Press the F1 key to show the Help Contents topic.

Press the Escape (Esc) key to move the cursor to the command line of the Status
Window.

6.8 STATUSWINDOW

The Status Window (Figure 6-9) accepts ICSO5PW commands entered on the command line,
executes them, and returns an error message or status update message, as in the message area of
the window.

The Status Window message area displays all 1CS05PW commands (including implemented
ICSO5PW menu options and toolbar buttons), and command results.

Use the scroll controls on the right side of the Status Window to view previous commands or use
these keys to navigate within the message area:

Pressthe up arrow (1) key to scroll the window up one line

Press the down arrow (1) key to scroll the window down one line.
Press the Home key to scroll the window to the first status line.
Press the End key to scroll the window to the last status line.
Press the Page Up key to scroll the window up one page.

Press the Page Down key to scroll the window down one page.
Press the F1 key to display the Help Contents topic.

Searss Windesr

lagfils &
Lot ile command canceled, FLle sa1 egen,

JEd

Dpening log file B:SWPENICERPICT, ICPEIPRYFICS LG

Bty

Command
Line

Figure 6-9. Status Window

M68ICS05POM/D 6-13

SIMULATOR USER INTERFACE @ MOTOROLA

To save the information displayed in the Status Window, enable logging:

* Choose the Start Logfile option from the ICSO5PW File menu, or enter the LF
command in the Status Window command line (Figure 6-10).

id
Spparstireg 1o Lo file bEEHITSIPITSLITSASALFICE LEC
id

g gl olowen

Foraly

Figure 6-10. Results of Entering the LF Command in the Status Window

* The Specify output LOG file dialog (Figure 6-11) opens.

i pane e |
i o |
] "-",:' \Ll

ST | o g

Figure 6-11. Specify Output LOG File! Dialog

* Inthe didog, choose a path and filename for the logfile. Press OK to create the file
(or Cancel to close the dialog without making changes).

» If you choose a logfile that already exists, the Logfile Already Exists message (Figure
6-12) appears, asking if you wish to overwrite the existing file or append the status
messages to the end of the existing file. Choose Overwrite or Append to begin
logging in the file or Cancel to close the dialog without opening the lodfile.

Logfile Already Exists! x|

The zpecified file already exiztz. Do you want to
Overwrite the file. Append to the hle, or Cancel the
Operation?

Append | LCancel |

Figure 6-12. The Logfile Already Exists M essage
» Status window messages are added to the logfile while logging is enabled.

To end logging, choose the End Logfile option from the ICSO5PW File menu or enter the LF
command in the ICSO5PW Status window command line.

6-14 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

6.9 CPU WINDOW

The CPU Window displays the current register values.

6.9.1 Changing Register Values

Use the CPU Window (Figure 6-13) or its Shortcut Menu options to view and modify the current
state of registers within the CPU.

» To change CPU register values using the Shortcut menu options, position the cursor
in the CPU window and click the right mouse button. Choose the option from the
shortcut menu shown on the right of Figure 6-13. Enter the new value in the dialog
and press OK to close the dialog and save the new value.

ACCA A
YREC 88 Set Accumulator
Set Index Register
PC 01008 Set Stack Pointer
Set PC
CCR 111.1... Set Condition Codes
SP FF Help...

Figure 6-13. CPU Window with Shortcut Menu

* To change CPU register value in the CPU window:

— To change the CPU accumulator (ACCA), index register (XREG), and
program counter (PC) values from the CPU window, click on the value and
enter the new value in the dialog. Press OK to close the dialog and save the
new value.

M68ICS05POM/D 6-15

SIMULATOR USER INTERFACE @ MOTOROLA

— To change the CPU CCR values, double click the CCR value in the CPU
window to open the Change CCR dialog (Figure 6-14). Changethe H, I, N, Z,
or C CCR hits by pressing the button below each to toggle condition code
register bits between 1 (on) and 2 (off). Press OK to close the dialog and save
the values.

[Ouageem __________________H
H ba I bt K ha & b b
L Jl e 60 BT

o 0t | 1% comt| 7 ope |

Figure 6-14. The Change CCR Dialog

— To change the CPU stack pointer (SP) value from the CPU window, position
the cursor in the CPU window and click the right mouse button to open the
CPU shortcut menu. Choose the Set Stack Pointer option. In the Change SP
Value dialog, enter the new value. Press OK to close the dialog and save the
value.

NOTE

In the current version of the ICSO5PW software, the values in the
CPU window behave differently when clicked. You can open the
appropriate dialog by clicking once on the ACCA and XREG
values and by clicking twice on the PC and CCR values. To change
the SP value, use the shortcut menu.

6.9.2 CPU Window Keyboard Commands

Use these keyboard commands to navigate in the CPU Window:
* Pressthe F1 key to shows the Help Contents topics.

» Press the Escape (Esc) key to move the cursor to the command line of the Status
Window.

6-16 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

6.10 CHIP WINDOW

6.10.1 Reading Valuesin the Chip Window

Use the Chip Window (Figure 6-15) to see avisual representation of the logic levels at all pins of
the chip.

. HCTD5P6 [=]

EST DD
TEQ 0s5C1
PAT O5C2
PAE DD7
PAS TCMP
PA4E PDS
PAZ PCO
PAZ PC1
PA1 PCZ
PAO PC3
PES PC4
PB6 PCS
PBT PCE
TS5 PCT

Ea e T e T T T T B R B
YFYYYYYYYYTFYTYTYYY
A A kA hbATALALL
M M MMM E e e M

Pod Detected:

Figure 6-15. Chip Window

=
e

If the ICSO5PW pod is connected to the software, the Chip Window reflects the values read from
the pod. For 1/0 pins, the arrows indicate whether the pin is an input or an outpuit.

6.10.2 Chip Window Keyboard Commands

Use these keyboard commands to navigate in the Chip Window:
» Pressthe F1 key to shows the Help Contents topics.

* Press the Escape (Esc) key to move the cursor to the command line of the Status
Window.

M68ICS05POM/D 6-17

SIMULATOR USER INTERFACE @ MOTOROLA

6.11 CYCLESWINDOW

Use the Cycles Window (Figure 6-16) to view the number of processor cycles that passed during
execution of code in the simulator. This is valuable if you want to count the number of cycles
that a section of code requires. In order to calculate the timing of code for a device, take the
number of cycles shown in the window and multiply by the amount of time that a cycle
represents in the target system. (i.e. for a 2MHz HCO5, the time per cycle is 50Qsex ()2

= Cycles 1] 3

CYCLES
gaooaeong

Figure 6-16. Cycles Window

6.12 STACK WINDOW

Use the Stack window (Figure 6-17) to view:
» Values that have been pushed on the stack
» The stack pointer value
» CPU results if a RTI or RTS instruction is executed at that time.

To display the stack window, enter the STACK command in the ICSO5PW Status Window
command line.

B T, |
Raw Bahes Tk r
TBILN
xx Lamy o =
E aiEa
(il deiesin HIE Wrlura
fox faws
P -i|...g. PE = BEEEE
= e
B
e j'.v ATl Sebara
0 LR P = EEEED
ax LANH
b EEFC A sux
= LEET
ax LA a b
L R om = S5
] 7o |

Figure 6-17. Stack Window

6.12.1 Interrupt Stack

During an interrupt, the Stack window displays:
* The interrupt stack

6-18 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

» Datavaluesin the stack
» Vaues of the condition code register (CCR), accumulator (A) and index register (X).

Thisinformation indicates the restored state of the stack upon the return from the interrupt.

6.12.2 Subroutine Stack

During execution of a subroutine, the stack window displays the subroutine stack that indicates
the restored state of the CPU upon return from a subroutine.

NOTE

M68HCO05 MCUs store information in the stack (1) during an
interrupt or (2) during execution of a subroutine. The stack window
shows both these possible interpretations of stack data. It is
important to know whether program execution is in an interrupt or
in a subroutine, to know which stack data interpretation isvalid.

6.13 TRACE WINDOW

Use the Trace Window (Figure 6-18) to view instructions captured while tracing is enabled.

11 BET ARER Sl @F
(T] "1 KT
11 R Bred iTh Ria
1B Fid nika Lo Ak
9 BEE AbER FSR abc
0 oabs [[Ei 5ThR i
PR kN sIh A8
§ B ai ETS
5 B ArER STh 44k
N mErz nicn LOA ma
I -] (44 T
1 RN HE1 NP XER
1 BEIR A7ER 5Th 11k

]
.-:-:_]'__j
[

Figure 6-18. Trace Window

To display the Trace Window, enter the SHOWTRACE command in the command line of the
ICSO5PW Status Window.

To enable or disable tracing, enter the TRACE command. If tracing is off, the command will
toggle tracing on; if tracing is on, the command toggles tracing off.

The trace buffer is a 1024 instruction circular buffer that contains al addresses that have been
executed. When the trace window displays instructions, it disassembles instructions at the
addresses stored in the trace buffer. For this reason, the tracing function cannot be used for self-
modifying code. If a buffer slot does not have an address stored in it, the trace window displays

M68ICS05POM/D 6-19

SIMULATOR USER INTERFACE @ MOTOROLA

the phrase "No Trace Available". The number in the beginning of atrace line is the slot number
in the trace buffer. The slot number is an offset for the instruction in that slot compared to the
current instruction executing (slot number=0).

6.14 BREAKPOINT WINDOW

Use the Breakpoint Window (Figure 6-19) to view all breakpoints currently set in the current
debugging session, and to add, modify, or delete breakpoints. You can set a maximum of 64
breakpoints.

Bldr i Ermumd Arwalad Bor i B ot 5P

sl lalle
Avallaals
Listbox —fate— |
Awallalile édldBreakpo.lnt
Avallshle Edit Breakpoint
et bamde Delete Breakpoint
Awal lanle

Awal 1able

Bemove All Breakpaintz

o 0K __Tuer | Help

Figure 6-19. Breakpoint Window
with Shortcut Menu

[T

To display the Breakpoint Window, enter the SHOWBREAKS command in the ICSO5PW Status
Window command-line.

If abreakpoint slot is empty, the word 'Available appears under the Address column.

6.14.1 Adding a Breakpoint

To add a breakpoint, with the cursor in the Breakpoint Window, click the right mouse button to
open the Breakpoint Shortcut Menu. Select the Add Breakpoint option from the Shortcut Menu.
In the Edit Breakpoint dialog (Figure 6-20), enter the address for the new breakpoint in the
Address text box. Press the OK button to close the dialog and save the new breakpoint.

B |
A BEE
ot | |
A sk |
ERT T |
SPvahm | |

Ok | X canea |

Figure 6-20. Edit Breakpoint Dialog

6-20 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

Y ou may qualify the breakpoint using these qualifiers:

» Count: Enter the number of times the address will be reached before breaking, i.e.,
break after n times (the default isn=1).

e Accumulator value Enter the number the accumulator value must reach before
breaking, i.e., break if address and A=n.

* X index register value: Enter the number the index register value must reach before
breaking, i.e., break if address and X=n.

e Stack Pointer value: Enter the number the stack pointer value must reach before
breaking, i.e., break if address and SP=n.

6.14.2 Editing a Breakpoint

To edit a breakpoint or view address information, double click on any empty breakpoint slot in
the Breakpoint Window listbox. The Edit Breakpoint dialog (Figure 6-20) displays address
information for the empty breakpoint slot. Enter the appropriate address and other conditional
qualifiers and press the OK button to exit.

In the Breakpoint Window, select the breakpoint to edit. Then use one of the following methods
to open the Breakpoint Shortcut menu and edit the breakpoint:

* Click the right mouse button to open the Breakpoint Shortcut Menu and select the
Edit Breakpoint menu option.

* Pressthe Insert key.

* Double click on the breakpoint in the listbox. In the Edit Breakpoint dialog, enter the
new breakpoint address and conditional qualifiers. Press the OK button to close the
dialog and store the new settings (or press the Cancel button to close the diaog
without saving new settings).

6.14.3 Deleting a Breakpoint

In the Breakpoint Window, choose the breakpoint to delete, and use one of the following
methods to delete the breakpoint:

» Click the right mouse button to open the Breakpoint Shortcut Menu and select the
Delete Breakpoint menu option.

* Pressthe Delete key, to remove the selected breakpoint from the breakpoint list.

Press the OK button to close the Breakpoint Window and store the changes (or press Cancel to
close the window without saving the changes).

M68ICS05POM/D 6-21

SIMULATOR USER INTERFACE @ MOTOROLA

6.14.4 Removing All Breakpoints

In the Breakpoint Window, click the right mouse button to open the Breakpoint Shortcut Menu.
Choose the Remove All Breakpoints menu option to clear all breakpoints. Press the OK button to
store changes and close the Breakpoint Window (or press the Cancel button to close the
Breakpoint Window without saving changes).

6.15 PROGRAMMER WINDOWS

Use the Programmer Windows to enter or display programming information and to choose the
filesto upload or download.

Programming software in the PC controls the M68ICS05P pod programming socket (U2), and
sends RESET, CLOCK, DATA, and other control signals to the pod by means of the serial
connection.

During programming, you may use three Programming Windows:

* Pick Window: The Pick Window (Figure 6-21) displays all programming actions and
functions for you to select.

T Piap a= Dian [PRI #an 90T |
P Mippam MO bpis @ drvies
FT Procp s F PPN cardp

&1 ‘teuidy ba & mmdeia

S0 & iy Dk b F ol
S0 5 by Lo Lol 1 ot
LA i et b5 Ul S Tl
G Dl - Fow Py e

E=
Figure 6-21. PROGO05P9 Programmer Pick Window

e Status Window: The Programmer Status Window accepts programming commands
on the command line or from the Pick Window and displays the command results in
the message area. It isidentical in form and function to the ICSO5PW Status Window.

* Files Window: The Programmer Files window (Figure 6-22) identifies the filename
of the download and upload files.

=| Programmer Files | v| =

Download File: Simulator Memory

Upload File: Mone

Figure 6-22. Programmer Files Window

For more information about using the Programmer windows, see the PROGRAM command
explanation in Chapter 7.

6-22 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

6.16 REGISTER BLOCK WINDOW

The Register Block Window (Figure 6-23) can be opened by pressing the Register Files button
on the ICSO5PW toolbar or by entering the R command in the Status Window command line.

-~ Win._. [Hl[=] 3

—Register Block

—Address

Figure 6-23. The Register Block Window

The R command loads the register interpreter and opens the Register Files window. From this
window, you can establish the WinReg (Figure 6-24) and Register Window text, colors, and
window positions and view the processor’s register files (sold separately by P& E Microcomputer
Systems).

If you have added register files to your host computer, you can select a file from the list of
register files to display the addresses and address descriptions for each and to begin the
interactive setup of system registers (for example, the 1/0, timer, and COP Watchdog Timer).

Y ou can view the registers, modify values, and store results in memory.

Reqgistes Mgk
F.l-HCI'!-CI Sotisl Covirrene ssers i 1500 _!"Bmll
Hidiess Dot et i

WEVER1 LEA o B Bl Bl v 4 wellyed
EREra- BEHT Wl 1 ki i K 1

mErans =L B0 Soamin Pasgeml ai
i R SCE: L1 [ut s B g

Figure 6-24. The WinReg Window with Typical Register File Information

M68ICS05POM/D 6-23

SIMULATOR USER INTERFACE @ MOTOROLA

6.17 ENTERING DEBUGGING COMMANDS

To enter commands in the ICSO5PW Status window command line:
1. Type the command and its options and/or arguments in the text area (the command
line).
2. When the command is complete, press the Enter key to execute the command.
3. If the command has not been entered correctly, the Status window will display a
message such as Invalid command or parameter. If the command has been entered

correctly, other prompts, messages, or data appropriate to the command entered are
displayed in the Status window text area.

4. After the command has been executed, a new blank line appears in the command line.

5. The ICSO5PW maintains a command buffer containing the commands and system
responses to the commands entered on the command line. Y ou can use the mouse or
keyboard commands to sequence forward or backward through the command buffer.

For more instructions on using the ICS05PW command set, see Chapter 7, The ICS05PW
Command Set.

6.18 1CSO5PW TOOLBAR

The ICSO5PW Toolbar (Figure 6-25) provides a number of convenient shortcut buttons that
duplicate the function of the most frequently used menu options. A tooltip or label pops up when
the mouse button lingers over atoolbar button, identifying the button’s function.

[l (¥ [w]=18] [Eld] [+

Figure 6-25. Winl DE Toolbar

aﬂn|ﬁ|

Table 6-2 identifies and describes the WinIDE toolbar buttons.

6-24 M68ICS05POM/D

@ MOTOROLA

SIMULATOR USER INTERFACE

Table 6-2.

| CSO5PW Toolbar Buttons

Icon Button Label

Button Function

= Back to Editor

n | Load S19 File

E Reload Current S19

Return to the WinIDE editor.

Open the Specify S19 File to Load dialog to choose an
S19 file.

Reload the last (most currently loaded) S19 file.

ZI Reset

Simulate a reset of the MCU and sets the program
counter (PC) to the contents of the reset vector (does
not start execution of user code).

S Step

Execute the STEP command.

iy Multiple Step

= Go

Execute the STEPFOR command.

Execute the GO command.

Stop

E

Stop execution of assembly commands.

EE Play Macro

Open the Specify Macro File to Execute dialog to
choose a macro to execute.

%b Record Macro

Open the Specify Macro File to Record dialog to enter
a filename for the macro.

Stop Macro Function

Open Logfile

Close Logfile

M68ICS05POM/D

Stop recording the macro.

Execute the LOGFILE command. Opens the Specify
Output Logfile dialog.

Execute the LOGFILE command; closes the current
logfile.

6-25

SIMULATOR USER INTERFACE @ MOTOROLA

6.19 CS05PW MENUS

Table 6-3 summarizes WinIDE menu titles and options.

Table 6-3. ICSO5PW Menus and Options Summary

Menu Option Description

File Load S19 File Open the Specify S19 File to Open dialog to choose S19 file.

Reload Last Reload the last S19 file used, or (if none loaded) display the
S19 Specify S19 File to Open dialog.

Play Macro Open the Specify Macro File to Execute dialog.

Record Macro = Open the Save As . . . dialog.

Stop Macro Close the macro or script file.

Open Logfile | Executes the LOGFILE command.

Close Logfile | Executes the LOGFILE command.

Exit Close the ICSO5PW simulator.

Execute Reset Reset the emulation MCU and program counter to the contents
Processor of the reset vector.
Step Execute the STEP command.

Multiple Step Execute the STEPFOR command.

Go Execute the GO command.

Stop Stop code execution.

Repeat Repeat the last command entered in the Status Window
Command command line.

6-26 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

Table 6-3. ICS05PW Menus and Options Summary (continued)

Menu Option Description

Windows | Code 1 Toggles the Code 1 Window open/closed.
Code 2 Toggles the Code 2 Window open/closed.
Memory Toggles the Memory Window open/closed.
Variables Toggles the Variables Window open/closed.
Cycles Toggles the Cycles Window open/closed.
Status Toggles the Status Window open/closed.
CPU Toggles the CPU Window open/closed.
Chip Toggles the Chip Window open/closed.
Change Opens the Changes Windows Colors dialog.
Colors
Reload Executes the LOADDESK command to load the desktop
Desktop settings from a file.
Save Desktop = Executes the SAVEDESK command to save the current

desktop settings to a file.

6.20 FILE OPTIONS

Use the ICSO5PW File menu options to load, reload, open, or close files, play or record macros,
or exit the ICSO5PW application.

To perform a File operation, click once on the File menu (Figure 6-26) title to open the menu.
Click on the option to execute.

Load519Fille F2
Beload Laszt 519 F3

Flay Macra Chrl+P
RecordMacro Chil+hd
Stop Macro Chrl+5

Open Logfile Chrl+L
LCloze Logfile Chl+C

Exit Chel-+

Figure 6-26. FileMenu

The following topics describe and explain the ICSO5PW File operations and dialogs.

M68ICS05POM/D 6-27

SIMULATOR USER INTERFACE @ MOTOROLA

6.20.1 Load S19 File

Select the Load S19 File option from the File menu to open the Specify S19 File to Load dialog
(Figure 6-27). If the S19 file is not in the default directory, choose a filename and drive/directory,
and network path of an object file or source file to load in the Debugger main window. Y ou can
also use this option to load SLD Map files.

Ll Mar of jppa:

o |
[uotmme s b= = =] [a =] _

Figure 6-27. Specify S19 File to Load Dialog

To load an S19 or .MAP file, choose the Load S19 File option from the File menu to open the
Soecify S19 File to Load dialog. Choose the path and filename and press OK to open the selected
filein the ICSO5PW (or press Cancel to close the dialog without making a selection).

Alternatives: Press the F2 function key or click the Load S19 File toolbar button, or enter the
LOAD command and filename and other arguments in the Status window command line.
6.20.2 Reload Last S19

Select the Reload Last S19 option from the File menu to open the Specify S19 File to Load
dialog (Figure 6-27) and select the most recently opened S19 or .MAP file to open in the
Debugger main window. Follow the procedure for loading an S19 file (above).

Alternatives: Press the F3 function key or click the Reload Current S19 toolbar button. These
are the keyboard equivalents to choosing the File - Reload Last S19 menu option.

6-28 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

6.20.3 Play Macro

Select the Play Macro option from the File menu to open the Specify MACRO File to Execute
dialog (Figure 6-28) to specify amacro filename and drive/directory path to play.

Specify MACRD File to Execute HE
File name: Folders:
|sample.mac | d:\pemicroimmevsw

Cancel |
25 d:h -
5 pemicro
5 mmevsw
List files of type: Dirives:
IMach’Scripl File [‘_ma(j I = d: j

Figure 6-28. Specify MACRO File to Execute Dialog

Alternatives: Pressthe Ctrl + P key combination or click the Play M acr o toolbar button These
are the keyboard equivalents to choosing the File - Play Macro menu option.

6.20.4 Record Macro

Select the Record Macro option from the File menu to open the Specify MACRO File to
Record dialog (Figure 6-29) and specify a macro filename and drive/directory path to record.

Specify MACRO File to Record HE
File name: Folders:
|’_mac | d:\pemicroimmevsw

Cancel |
sample_.mac - 25 d:h -

5 pemicro

-

List files of type: Dirives:
IMach’Scripl File [‘_ma(j I = d: j

Figure 6-29. Specify MACRO File to Record Dialog

After the macro file has been chosen, all keyboard commands entered in the Debugger window
will be recorded in the macro file and can be repeated by playing “back” the macro udtilg the
- Play Macro menu option.

Alternatives. Press theCtrl + M key combination or click th&®ecord Macro toolbar button
These are the keyboard equivalents to choosingitee Record Macro menu option.

M68ICS05POM/D 6-29

SIMULATOR USER INTERFACE @ MOTOROLA

6.20.5 Stop Macro

Select the Stop Macro option from the File menu (or press the Ctrl + S key combination) to
stop the active macro’s execution.

Alternatives. Press th&Ctrl + S key combination or click th8top Macro toolbar button. These
are the keyboard equivalents to choosinghite - Stop Macro menu option.
6.20.6 Open Logfile

Select theDpen Logfile option from the File menu to open tHaecify Output LOG File dialog
(Figure 6-30). Use this dialog to specify a log filename and directory/drive path in which to save
output log information for the current debugging session.

i =
= T e T BT

._I ELL = il
_4 prec
=
_f el

L2l

List lberp ol bppes Daye.
|[FiE Logie kgl =] [d =

Figure 6-30. Specify Output LOG File Dialog

If the specified log file exists, a message box (Figure 6-31) prompts you to:
» Overwrite the existing logfile with current logging information
» Append the current logging information at the end of the existing logfile
» Cancel the Open Logfile command without saving logging information

Figure 6-31. Logfile Already Exists Dialog

The open log file does not appear in the Debugger window. To enable logging in a currently
active logfile, you must execute th& (Log File) command as well, otherwise no logging occurs
in the open log file.

6-30 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

The LF command begins logging of commands and responses to the specified external. While
logging is enabled, any line appended to the command log window is also written to the log file

(Figure 6-32). Logging to the external file continues until another LF command stops logging
and closesthe log file.

Opening log file D:\PEMICROALOG\SAMPLE.LOG i
*Logfile —
Appending to log file D:\PEMICROMLOGA\SAMPLE.LOG

>LF

bReset

>0sc

>Baud

>Step

>Stepfor

Operator interrupt.

>Stepfor

2 oz
Figure 6-32. A Sample Output Log File

Y ou may view the logfile in the WinIDE editor or in any program that displays text files.

Alternatives. Press the Ctrl + L key combination or click the Open Lodfile toolbar button
These are the keyboard equivalents to choosing the File - Open Logfile menu option.

6.20.7 CloseLogfile
Choose Close Logfile from the File menu to stop logging and close the active logfile.
Alternatives: Type Ctrl + C or click the Close Logfile button on the toolbar, or enter the LF

command in the Status window command line. These are the keyboard equivalents to choosing
the File - Close Logfile menu option.

6.20.8 Exit
Choose Exit from the File menu to close the Debugger application.

Alternative: Type Ctrl + X to exit the Debugger application and close the subordinate and main
windows. Thisisthe keyboard equivalent to choosing the File - Exit menu option.

M68ICS05POM/D 6-31

SIMULATOR USER INTERFACE @ MOTOROLA

6.21 |CS05PW EXECUTE OPTIONS

Use the ICSO5PW Execute menu options to reset the emulation microcontroller and perform
debugger routines.

To perform an Execute operation, select Execute in the Menu bar to open the Execute menu
(Figure 6-33). Click on an option to perform the operation.

Heset Proceszor Fd

Step F5
Multiple Step FE
Go F?
Stop Fa

Figure 6-33. ICSO5PW Execute Menu

6.21.1 Reset Processor

Choose Reset Processor from the Execute menu to send the RESET command to the
emulation MCU and reset the program counter (PC) to the contents of the reset vector.

Alternative: Pressthe F4 function key. Thisis the keyboard equivalent of the Execute - Reset
Processor menu option.
6.21.2 Step

Choose Step from the Execute menu to send the Single Step (Trace) command to the MCU. The
Step command executes a single instruction, beginning at the current program counter (PC)
address value.

NOTE

The Step command does not execute instructions in real-time, so timer values
cannot be tested using this command.

Alternative: Press the F5 function key. This is the keyboard equivalent to choosing the
Execute - Step menu option.

6-32 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

6.21.3 Multiple Step

Choose Multiple Step from the Execute menu to send the STEPFOR command to the MCU.
The STEPFORM command begins continuous instruction execution, beginning at the current
program counter (PC) address value, and continuing until any key is pressed.

NOTE

The Multiple Step command does not execute instructions in real-time, so timer
values cannot be tested using this command.

Alternative: Press the F6 function key. This is the keyboard equivalent to choosing the
Execute - Multiple Step menu option.
6.21.4 Go

Choose Go from the Execute menu to start execution of code in the ICSO5PW at the current
address. Code execution continues until a stop command is entered, a breakpoint is reached, or
an error occurs.

Alternative: Press the F7 function key. This is the keyboard equivalent to choosing the
Execute - Go menu option.
6.21.5 Stop

Choose Stop from the Execute menu to stop program execution and update the 1CSO5PW
simulator windows with current data.

Alternative: Press the F8 function key. This is the keyboard equivalent to choosing the
Execute - Stop menu option.
6.21.6 Repeat Command

Choose Repeat Command from the Execute menu to repeat the execution of the last command
entered in the Status Window command line.

Alternative: Press the F9 function key. Thisis the keyboard equivalent to choosing the Execute
- Repeat Command menu option.

M68ICS05POM/D 6-33

SIMULATOR USER INTERFACE @ MOTOROLA

6.22 |CSO5PW WINDOW OPTIONS
Use the Window menu options to change the window displays in the ICSO5PW simulator.

To make changes to the windows, select Window in the Menu bar to open the Window Menu
(Figure 6-34). Click on an option to perform the operation.

Code 1
v Code 2
v bemony
v Wariables
v LCycles
v Status
v CEU
v Chip

Change Colors

Reload Desktop
Save Desktop

Figure 6-34. Window Menu

6.22.1 Open Windows

The Window menu options itemize the source file windows that can be opened in the ICSO5PW.
A check beside the window name toggles that window display to on. Uncheck the window name
to close the window; check the window name to openit.

For example, Figure 6-35 indicates that all ICSO5PW windows are open except Code 1. To open
the Code 1 window, click on the Code 1 option. To close the Chip Window, click on the Chip
option to remove the check and close the window.

6-34 M68ICS05POM/D

@ MOTOROLA SIMULATOR USER INTERFACE

6.22.2 Change Colors

Choose Change Colors from the Windows menu to open the Change Window Colors Diaog
(Figure 6-35).

The Change Window Colors dialog displays the color settings for the ICSO5PW debugger
windows or window components. To see the current settings, select the window or window
element from the list on the left. To change the foreground or background color setting for this
window or element, uncheck the Use Defaults for Foreground/Background checkbox, and use the
left mouse button to select a foreground color, or use the right mouse button to select a
background color. Press the OK button to save the color changes (or press the Cancel button to
close the dialog without saving changes).

Some window items allow only the foreground or background to be changed.

1 baarsps ' wraborm I pdary
Statun N reiow Dialag Cemnard=s

Stalus Wirdow Oialog Respamses i --. .
fratus Wimdow - DEallog Backgreus --.

ftatus Wimdow - Diallog Selected ——
Statun B red e Cammardhex Tead . .

Slatus Mirdow - ELatus Dar

Fopip Selittion Windass - Harmal ..
Fopup Selection Winsaws - Selecked

Popup Selection Windous Fimshisd Uve Dol swtn Fon
Chip Wiadew - Pl Values [+ Faing

thip Wisdiw - Fad [editatar I Wk

-

Thiz iz & sampls of whad the i in @ wind e will Inek Hioe.

ok | et | 7 hew |

Figure 6-35. Change Window Colors Dialog

6.22.3 Reload Desktop

Choose Reload Desktop from the Windows menu to reload the stored configuration for the
current project.

This option is useful for restoring desktop window to their stored sizes and locations after
making changes. To make changes permanent, choose the Save Desktop option. The new
window sizes and locations will be written over the old settings, and stored with other project
files.

6.22.4 Save Desktop

Choose Save Desktop from the Windows menu to save the current configuration of the
desktop, the position and size of the windows in the ICSO5PW simulator.

M68ICS05POM/D 6-35

SIMULATOR USER INTERFACE @ MOTOROLA

6-36 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

CHAPTER 7
| CSO5PW DEBUGGING COMMAND SET

7.1 OVERVIEW

This chapter consists of:
* Alogical overview of the ICSO5PW debugging command set

* An explanation of rules for using the command set, including command syntax and
arguments

* A summary of commands by type and function

» Detailed descriptions of the commands, with example usage
The ICS05PW simulator command set consists of commands for simulating, debugging,
analyzing, and programming microcontroller programs. Use the commands to:

* Initialize emulation memory

» Display and store data

» Debug user code

» Control the flow of code execution

M68ICS05POM/D 7-1

DEBUGGING COMMAND SET @ MOTOROLA

7.2 1CSOSPW COMMAND SYNTAX

A command is a line of ASCII text that you enter from the computer keyboard. For ICSO5PW
debugging commands, enter the command and its arguments in the ICSO5PW Status window
command line. Press Enter to terminate each line and activate the command. The typical
command syntax is:

command [<argunent>]. ..

Where:
command A command name, in upper- or lower-case letters.
<argument> An argument indicator; when arguments are italicized, they
represent a placeholder for the actua value you enter; when not
italicized, they indicate the actual value to enter. Table 7-1 explains
the possible argument values.
In command syntax descriptions:
[] brackets enclose optional items,
| avertica line meansor,
an ellipsis means that you can repeat the preceding item,
@) parentheses enclose items only for syntactical purposes

Except where otherwise noted, numerical values in debugging command examples are
hexadecimal.

7-2 M68ICS05POM/D

@ MOTOROLA

DEBUGGING COMMAND SET

7.3 COMMAND-SET SUMMARY

Table 7-1 lists the argument types used for commands. Table 7-2 lists the commands
alphabetically and summarizes their functions.

7.3.1 Argument Types

Table 7-1. Argument Types

Type Syntax Indicators Explanation
Numeric <n>, <rate>, <data>, Hexadecimal values, unless otherwise noted.
<signal>, <frame>, For decimal values, use the prefix ! or the suffix T.
<frequency>, <clips>, For binary values, use the prefix % or the suffix Q.
<count>, <value> Example: 64 = 1100 = 100T = %1100100 = 1100100Q.

Address <address> Four or fewer hexadecimal digits, with leading zeros when
appropriate. If an address is decimal or binary, use a prefix
or suffix, per the explanation of numeric arguments.

Range <range> A range of addresses or numbers. Specify the low value,
then the high value, separated by a space. Use leading
zeros if appropriate.

Symbol <symbol>, <label> Symbols of ASCII characters, usually symbols from source
code.

Filename <filename> The name of afile, in DOS format: eight or fewer ASCII
characters. You may include an optional extension (three or
fewer characters) after a period. If the file is not in the
current directory, precede the name with one or more
directory names.

Keyword Capital letters, such A word to be entered as shown, although optionally in lower

as CLIPS case.
<type>, <state>, Sets of keywords: enter one of the set for a command.
<id>, <mcuid>,
<tag>, <signal>,
<mode>, <v>
Operator <op> + (add); - (subtract); * (multiply); or / (divide)

M68ICS05POM/D

DEBUGGING COMMAND SET

@ MOTOROLA

7.3.2 Command Summary

Command

ACC

ASM

BELL

BF

BR
BREAKA

BREAKSP

BREAKX

C

CAPTURE
CAPTUREFILE
CCR

CF

CHIPMODE
CLEARMAP
CLEARSYMBOL
COLORS

CY

CYCLES

Table 7-2. ICSO5PW Command Overview

Description

Set the accumulator to specified value and display new value in CPU
Window. (ldentical to the ACC command.)

Set the accumulator to specified value and display new value in CPU
Window. (Identical to the A command.)

Assemble M68HCO5 instruction mnemonics and place resulting machine
code in memory at the specified address.

Sound PC bell the specified number of times.
Fill a block of memory with a specified byte, word, or long value.
Display or set instruction breakpoint to specified values or at cursor location.

Set accumulator breakpoint to halt code execution when the accumulator
value equals the specified value.

Set stack pointer breakpoint to halt code execution when the SP equals the
specified value.

Set index breakpoint to halt code execution when the X or Index register
equals the specified value.

Set or clear the C bit of the CCR.

Specify location to be monitored for changes in value.

Open a capture file to record changed values. (Identical to the CF command.)
Set the CCR in the CPU to the specified hexadecimal value.

Open a capture file to record changed values. Identical to the CAPTUREFILE
command.

Set chip for simulation

Remove the current MAP file from memory.
Remove all user-defined symbols from memory.
Set simulator colors

Change the value of the cycles counter.

Change the value of the cycles counter.

M68ICS05POM/D

@ MOTOROLA

DEBUGGING COMMAND SET

Table 7-2. ICS05PW Command Overview (continued)

Command

DASM

DDRA
DDRB
DUMP

EVAL

EXIT
G

GO

GOMACRO

GOTIL

GOTOCYCLE

HELP

I

INFO
INPUTA
INPUTB
INPUTS
INT

M68ICS05POM/D

Description

Disassemble machine instructions, display addresses and contents as
disassembled instructions in the Code Window.

Assign the specified byte value to the Port A data direction register (DDRA).
Assign the specified byte value to the Port B data direction register (DDRB).

Send contents of a block of memory to the Status Window in bytes, words or
longs.

Evaluate a numerical term or expression and give the result in hexadecimal,
decimal, octal, and binary format.

Terminate the software and close all windows. (Identical to QUIT.)

Start execution of code at the current PC address or at an optional specified
address. (ldentical to the GO and RUN commands.)

Start execution of code at the current PC address or at an optional specified
address. (Identical to the G and RUN commands.)

Execute the program in the simulator beginning at the address in the PC and
continue until a keypress, Stop Macro command (from the Toolbar),
breakpoint, or error occurs.

Execute code beginning at the PC address and continue until the PC contains
the specified ending address or until a keypress, Stop Macro command (from
the Toolbar), breakpoint, or error occurs.

Execute code beginning at the current PC and continue until the cycle
counter is equal to or greater than the value specified.

Set or clear the H bit in the CCR.

Open the ICSO5PW Help File

Set or clear the | bit of the CCR.

Display information about the line highlighted in the source window.
Set the simulated inputs to Port A.

Set the simulated inputs to Port B.

Show the simulated input values to Port A and B.

View or assign the state value of the MCU IRQ pin. (Identical to the IRQ
command.)

DEBUGGING COMMAND SET

@ MOTOROLA

Table 7-2. ICS05PW Command Overview (continued)

Command Description

IRQ View or assign the state value of the MCU IRQ pin. (Identical to the INT
command.)

LF Open a new or specified external file to receive log entries of commands and
responses in the Status Window. (Identical to the LOGFILE command.)

LISTOFF Turn off screen listing of stepping information.

LISTON Turn on screen listing of stepping information.

LOAD Load S19 object file and associated MAP file into the ICSO5PW.

LOADDESK Load the desktop settings for window positions, size, and visibility.

LOADMAP Load a MAP file containing source level debug information into the ICSO5PW.

LOGFILE Open a new or specify an existing external file to receive log entries of
commands and responses from the Status Window. (Identical to the LF
command.)

MACRO Execute a macro file containing debug command sequences.

MACROEND Close the macro file in which the debug command sequences are being
saved.

MACROSTART Open a macro file and save all subsequent debug commands to this file until
closed by the MACROEND command during an active ICSO5PW session.

MAP View information from the current MAP file stored in memory. (Identical to the
SHOWMAP command.)

MD Display the contents of memory locations beginning at the specified address
in the Memory Window.

MM Modify contents of memory beginning at the specified address, and/or select
bytes, words, longs.

N Set or clear the N bit of the CCR.

NOBR Remove one or all of active breakpoints.

NOMAP Remove the current MAP file from memory, forcing the ICSO5PW to show
disassembly in the code windows instead of user source code. (Identical to
the CLEARMAP command.)

NOSYMBOL Remove all user-defined symbols from memory; symbols defined in a loaded
MAP file are not affected by the NOSYMBOL command.

PC Assign the specified value to the MCU program counter.

7-6 M68ICS05POM/D

@ MOTOROLA

DEBUGGING COMMAND SET

Table 7-2. ICS05PW Command Overview (continued)

Command Description

POD Attempt to connect with the ICSO5PW circuit board through the specified
COM port; when successful, the POD command returns the current status of
ports, reset and IRQ pins on the ICSO5PW board and the board version
number.

PORTA Assign the specified value to the Port A output register latches. (Identical to
the PRTA command.)

PORTB Assign the specified value to the Port B output register latches. (Identical to
the PRTB command.)

PROGRAM Start the programmer for the desired device.

PRTA Assign the specified value to the Port A output register latches. (Identical to
the PORTA command.)

PRTB Assign the specified value to the Port B output register latches. (Identical to
the PORTB command.)

QUIT Terminate the ICSO5PW application and close all windows. (Identical to the
EXIT command.)

R Open window for Register files (available separately from P&E Microcomputer
Systems) and starts interactive setup of system registers such as I/O, time,
COP.

REG Display contents of CPU registers in the Status Window. (Identical to the
STATUS command.)

REM Enter comments in a macro file.

RESET Simulate a reset of the MCU and sets the PC to the contents of the reset
vector. Does not start execution of user code.

RESETGO Simulates a reset of the MCU, sets PC to contents of the reset vector, and
starts execution from the PC address.

RUN Start execution of code at the current PC current or specified address.
(Identical to the G or GO command.)

SAVEDESK Save the desktop settings for the ICSO5PW program when it is first opened
or for use with the LOADDESK command.

SCRIPT Execute a macro file containing debug command sequences. (ldentical to the
MACRO command.)

SHOW Display the contents of memory locations in the Memory Window beginning at

the specified address. (Identical to the MD command.)

M68ICS05POM/D

DEBUGGING COMMAND SET

@ MOTOROLA

Table 7-2. ICS05PW Command Overview (continued)

Command Description

SHOWBREAKS Open window displaying breakpoints used in the current debug session, and
allow modifying breakpoints.

SHOWCODE Display code in the Code Windows beginning at the specified address, but
without changing the value of the PC.

SHOWMAP View current MAP file.

SHOWPC Display code starting from address in the PC in the Code Window.

SHOWTRACE Display the Trace Window with the last 1024 instructions executed since the
TRACE command issued.

SNAPSHOT Save window data to the open log file.

SP Assign specified value to the stack pointer used by the CPU and display in
the CPU Window.

SS Step through a specified number of source code instructions, starting at the
current PC address value, then halt.

ST Step through a specified number of assembly instructions, starting at the
current PC address value, then halt. (Identical to the STEP and T
commands.)

STACK Open the HCO5 Stack Window showing the stack pointer value, data stored
on the stack, and the results of RTS or RTI instruction.

STATUS Display the contents of the CPU registers in the Status Window. (Identical to
the REG command.)

STEP Step through a specified number of assembly instructions, starting at the
current program counter address value, then halt. (Identical to the ST or T
commands.)

STEPFOR Execute instructions continuously, one at a time, starting at the current PC
address and continuing until reaching an error condition, breakpoint, or
keypress.

STEPTIL Step through instructions starting at current PC address and continue until
PC value reaches the specified address, or until keypress, breakpoint, or
error occurs.

SYMBOL View current or create new symbols.

SYSINFO Show the amount of system memory available to the ICSO5PW and the
largest memory block available.

T Step through a specified number of assembly instructions, starting at the

current PC address, then halt. (Identical to the ST or STEP commands.)

M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

Table 7-2. ICS05PW Command Overview (continued)

‘ Command Description

TRACE Toggle tracing.

UPLOAD_SREC Upload the content of the specified memory block (range) in S19 file format
and display the contents in the Status Window, and enter information into the
current log file.

VAR Display specified address and contents in the Variables Window for viewing
during code execution.

VER Display version and data of ICSO5PW. (Identical to the VERSION command.)

VERSION Display version and data of ICSO5PW. (Identical to the VER command.)

WAIT Delay simulator command execution by a specified number of cycles.

WHEREIS Display value of the specified symbol.

X Set the X register to the specified value and display in the CPU Window.

(Identical to the XREG command.)

XREG Set the X register to the specified value and display in the CPU Window.
(Identical to the X command.)

Z Toggle the Z bit in the CCR.

7.4 COMMAND DESCRIPTIONS

The following sections, which are arranged alphabetically by command name, describe the
commands in detail.

M68ICS05POM/D 7-9

DEBUGGING COMMAND SET @ MOTOROLA

A or ACC Set Accumulator Value

The ACC command sets the accumulator to a specified value. The value entered with the
command is shown in the CPU window. The ACC and A commands are identical.

Syntax:
ACC <n>

where:
<n> The value to be loaded into the accumul ator.

Example:
A 10 Set the accumulator to $10.

7-10 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

ASM Assemble Instructions

The ASM command assembles M68HCO05-family instruction mnemonics and places the resulting
machine code into memory at the specified address. The command displays a window with the
specified address (if given) and current instruction, and prompts for a new instruction. Enter the
new instruction in the New Instruction text box. Press the Enter key to assemble the new
instruction, store and display the resulting machine code, then move to the next memory location
where you will be prompted for another instruction.

If there is an error in the instruction format, the address stays at the current address and an
assembly error flag appears. To exit assembly, press the Exit button.

Syntax:
ASM [<addr ess>]

where:
<address> Address where machine code is to be generated. If you do not
specify an <address> value, the system checks the address used by
the previous ASM command, then uses the next address for this
ASM command.
Examples:

With an address argument:
ASM 100

The Assembly Window appears as shown on the left of Figure 7-1; the Assembly Window with
the ASM command and no argument is shown on the right).

B sivii Bddrrun a1 g

Figure 7-1. Assembly Window Showing ASM Command
with Argument (left), without Argument (right)

M68ICS05POM/D 7-11

DEBUGGING COMMAND SET @ MOTOROLA

BELL Sound PC Bell

The BELL command sounds the PC bell the specified number of times. If you enter no argument,
the bell sounds once. To turn off the bell asit is sounding, press any key.

Syntax:
BELL [<n>]

where:
<n> The number of times to sound the bell.

Example:
BELL 3 Ring PC bell 3 times.

7-12 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

BF Block Fill Memory

The BF command fills a block of memory with a specified byte, word, or long value. The
optional argument specifies whether to fill the block in bytes (.B, the default, 8 bits), in words
(.\W, 16 bits), or inlongs (.L, 32 bits).

Syntax:

BF [.B | .W/] .L] <startrange> <endrange> <n>

where:
<dtartrange> Beginning address of the memory block (range).
<endrange> Ending address of the memory block (range).
<n> Byte, word, or long value to be stored in the specified block.
* If the byte variant (.B) isused , then <n> must be a 8-hit value.
» If theword variant (W) isused , then <n> must be a 16-bit value.
* If thelong variant (.L) isused , then <n> must be a 32-bit value.

Examples.
BF CO CF FF Store FF in bytes at addresses CO-CF.
BF. W 300 31F 4143 Store word value 4143 at addresses 300-31F.

M68ICS05POM/D 7-13

DEBUGGING COMMAND SET @ MOTOROLA

BR Set Instruction Breakpoint

The BR command displays or sets instruction breakpoints, according to its parameter values:

* If you enter no parameter values, the BR command displays a list of al current
breakpoints in the status window.

* If you enter an <address> value, the BR command sets a breakpoint at the specified
address.

You may also enter an optional value <n> with the address to specify a break count. The BR
command sets a breakpoint at the specified address, but code execution does not break until the
nth time it arrives at the breakpoint.

NOTE

The maximum number of breakpoint addresses is 64. Each BR,
BREAKA, BREAKSP, or BREAKX command that includes an
address value uses an additional breakpoint address, unless the
address is a duplicate. For example, if 64 BR commands already
have taken up 64 addresses, the only way to include an address
value in a BREAKA, BREAKSP, or BREAKX command is to
duplicate one of those 64 addresses.

If source code is displayed in either code window, you can set, remove, or clear al breakpoints
using mouse or keyboard commands:

1. Position the cursor on the line of code for which you want to set a breakpoint.

2. Pressthe right mouse button once to open the Code Window Shortcut Menu.

3. Select Toggle Breakpoint at Cursor option. If there is no current breakpoint set at this
line of code, a breakpoint will be set. If there is a current breakpoint set at this line of
code, the breakpoint will be removed.

To remove al breakpoints:

* Enter the NOBR command in the Status Window command line.

7-14 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

BR (continued)
Syntax:
BR [<address> [<n>]] ;Set a breakpoint
BR ;list current breakpoints
where:
<address> The address for a breakpoint.
<n> Break after value: code execution passes through the breakpoint n-

1 times, then breaks the nth time it arrives at the breakpoint.

Examples:
BR 300 Set a breakpoint at address 300
BR 330 8 Set a breakpoint at address 330, break on eighth arrival at

330.

M68ICS05POM/D 7-15

DEBUGGING COMMAND SET @ MOTOROLA

BREAKA Set Accumulator Breakpoint

The BREAKA command sets an accumulator breakpoint to halt code execution when the value
of the accumulator equal s the specified n value.

* With an n value, the command forces a break in execution as soon as the accumul ator
value equals n.

* With n and address values, the command forces a break in execution when the
accumulator value equals n and execution arrives at the specified address. (If the
accumulator value changes from n by the time execution arrives at the address, no
break occurs).

NOTE

The maximum number of breakpoint addresses is 64. Each BR,
BREAKA, BREAKSP, or BREAKX command that includes an
address value uses an additional breakpoint address, unless the
address is a duplicate. For example, if 64 BR commands already
have taken up 64 addresses, the only way to include an address
value in a BREAKA, BREAKSP, or BREAKX command is to
duplicate one of those 64 addresses.

If you enter the BREAKA command without an address value, the halt in code execution clears
the accumulator breakpoint. To cancel the accumulator breakpoint before the halt occurs, enter
the BREAKA command without any parameter values. (If you enter the BREAKA command
without an address value, the accumulator breakpoint does not show in the BREAKPOINT
WINDOW.)

If you enter the BREAKA command with an address value, you may clear the accumulator
breakpoint by one of these methods:
* Enter the NOBR command

» Position the cursor on that address in the code window, then press the right mouse
button, and select Toggle Breakpoint at Cursor menu item.

Syntax:
BREAKA [<n> [<address>]]
where:
<n> Accumulator value that triggers a break in execution.
<address> Optional address for the break in execution (provided that the

accumulator value equals n).

7-16 M68ICS05POM/D

@ MOTOROLA

DEBUGGING COMMAND SET

BREAKA

Examples.
BREAKA 55

BREAKA
BREAKA 55 300

M68ICS05POM/D

(continued)

Break execution when the accumulator value equal's 55.
Cancel the accumulator breakpoint.

Break execution at address 300 if accumulator value equals
55.

7-17

DEBUGGING COMMAND SET @ MOTOROLA

BREAKSP Set Stack Pointer Breakpoint

The BREAKSP command sets a stack pointer breakpoint to halt code execution when the value
of the stack pointer equals a specified value.

» With an n value, the command forces a break in execution as soon as the stack pointer
value equals n.

* With n and address values, the BREAKSP command forces a halt in execution when
the stack pointer value equals n and execution arrives at the specified address. (If the
stack pointer value changes from n by the time execution arrives at the address, no
break occurs).

NOTE

The maximum number of breakpoint addresses is 64. Each BR,
BREAKA, BREAKSP, or BREAKX command that includes an
address value uses an additional breakpoint address, unless the
address is a duplicate. For example, if 64 BR commands already
have taken up 64 addresses, the only way to include an address
value in a BREAKA, BREAKSP or BREAKX command is to
duplicate one of those 64 addresses.

If you enter the BREAK SP command without an address value, the halt in code execution clears
the stack pointer breakpoint. To cancel the stack pointer breakpoint before the halt occurs, enter
the BREAKSP command without any parameter values. (If you enter the BREAKSP command
without an address value, the stack pointer breakpoint does not show in the Breakpoint
Window.)

If you enter the BREAKSP command with an address value, you may clear the stack pointer
breakpoint by one of these methods:
* Enter the NOBR command

» Position the cursor on that address in the code window, then press the right mouse
button, and select Toggle Breakpoint at Cursor menu item.

7-18 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

BREAKSP (continued)
Syntax:
BREAKSP [<n> [<address>]]
where:
<n> Stack pointer value that triggers a break in execution.
<address> Optional address for the break in execution (when that the stack
pointer value equals n).
Examples:
BREAKSP EO Break execution when the stack pointer (SP) value equals
EO.
BREAKSP Cancel the SP breakpoint.
BREAKSP EO 300 Break execution at address 300 if SP value equals EO.

M68ICS05POM/D 7-19

DEBUGGING COMMAND SET @ MOTOROLA

BREAKX Set Index Register Breakpoint

The BREAKX command sets an index breakpoint to halt code execution when the value of the
index register equals the specified n value.

* With an n value, the command forces a break in execution as soon as the index
register value equals n.

* With n and address values, the command forces a halt in execution when the index
register value equals n and execution arrives at the specified address. (If the index
register value changes from n by the time execution arrives at the address, no halt
OCCurs).

NOTE

The maximum number of breakpoint addresses is 64. Each BR,
BREAKA, BREAKSP, or BREAKX command that includes an
address value uses an additional breakpoint address, unless the
address is a duplicate. For example, if 64 BR commands already
have taken up 64 addresses, the only way to include an address
value in a BREAKA, BREAKSP or BREAKX command is to
duplicate one of those 64 addresses.

If you enter the BREAKX command without an address value, the halt in code execution clears
the index register breakpoint. To cancel the index register breakpoint before the halt occurs, enter
the BREAKX command without any parameter values. (If you enter the BREAKX command
without an address value, the index register breakpoint does not show in the Breakpoint
Window.)

If you enter the BREAKX command with an address value, you may clear the index register
breakpoint using one of these methods:
* Enter the NOBR command

» Position the cursor on that address in the code window, then press the right mouse
button, and select Toggle Breakpoint at Cursor menu item.

Syntax:
BREAKX [<n> [<address>]]
where:
<n> Index register value that triggers a break in execution.
<address> Optional address for the break in execution (when that the index
register value equals n).

7-20 M68ICS05POM/D

@ MOTOROLA

DEBUGGING COMMAND SET

BREAKX

Examples.
BREAKX A9

BREAKX
BREAKX A9 300

M68ICS05POM/D

(continued)

Break execution when the index register value equals A9.
Cancel the index breakpoint.

Break execution at address 300 if index register value
equals A9.

7-21

DEBUGGING COMMAND SET @ MOTOROLA

C Set/Clear Carry Bit

The C command sets or clears the C bit of the condition code register (CCR).

NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR pattern is 111HINZC (H is haf-carry, | is IRQ
interrupt mask, N is negative, Z is zero and C is carry). A letter in
these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:
C 0|1

Examples:
CcCo Clears the C hit of the CCR.

c1 Sets the C bit of the CCR.

7-22 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

CAPTURE Capture Changed Data

The CAPTURE command specifies locations to be monitored for changes in value. If the value
of such alocation changes and if a capture file is open, the file records the change in value. (See
the CAPTUREFILE or CF command for more information about capture files).

To stop monitoring a location, specify that same location in another CAPTURE command, or
close the capture file. (Closing the capture file undoes the specifications for all monitoring
locations).

NOTE

Before you enter the CAPTURE command, open a capture file via
the CAPTUREFILE or CF command. The CAPTURE command
has no effect unless a capture fileis open.

Syntax:
CAPTURE <address> [<address>...]
where:
<address> Location to be monitored for achange in value.
Examples:
CAPTURE PORTA Monitor location PORTA for any value changes.
CAPTURE Q0 Monitor RAM location CO for any value changes.
CAPTURE DO D1 D2 Monitor for any value changesin an array of locations.

M68ICS05POM/D 7-23

DEBUGGING COMMAND SET @ MOTOROLA

CAPTUREFILE or CF Open/Close Capture File

The CAPTUREFILE command opens a capture file to record changed values. If the specified file
does not yet exist, this command creates the file. If the file already exists, you can use an optional
parameter to specify whether to overwrite existing contents (R, the default) or to append the log
entries (A). If you omit this parameter, a prompt asks for this overwrite/append choice.

The command interpreter does not assume a filename extension for the capture file. To close the
capture file, enter this command without any parameter values.

The CF and CAPTUREFILE commands are identical. If no CAPTURE command has specified
|ocations to be monitored, the CF and CAPTUREFILE commands have no effect.

NOTES

The CAPTURE command specifies the location to be monitored
for value changes. Closing the capture file deletes the location
specification. The simulator continues writing to an open capture
file. The capture file must be closed within a reasonable time, to
prevent the file from growing large.

Syntax:
CAPTUREFI LE [<filename> [R | Al]
where:
<filename> Name of the capturefile.
Examples:

CAPTUREFI LE TEST. CAP Open capture file TEST.CAP
CF TEST4.CAP A Open capture file TEST4.CAP; append new entries

7-24 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

CCR Set Condition Code Register

The CCR command sets the condition code register (CCR in the CPU) to the specified
hexadecimal value. The value entered with the command displays in the CPU Window.
NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR binary pattern is 111HINZC (H is half-carry, |
IS IRQ interrupt mask, N is negative, Z is zero and C is carry). A
letter in these designators means that the corresponding bit is set; a
period means that the corresponding bit is clear.

Syntax:

CCR <n>

where:

<n> The new hexadecimal value for the CCR.

Example:

CCR E4 Assign the value E4 to the CCR. This makes the binary
pattern 11100100; the N bit set, other bits clear.

M68ICS05POM/D 7-25

DEBUGGING COMMAND SET @ MOTOROLA

CHIPMODE Set Chip for Simulation

The CHIPMODE command displays the Pick Device dialog containing alist of the HCO5 devices
that can be simulated with ICSO5P for Windows. Select the device in the following window:

Pick Derice |

[HC705P9

« DK X Cancel

Figure 7-2. Pick Device Dialog

NOTE

The selection of a new chip does not take effect until the next
debugging session.

Syntax:

CHIPMODE

Example:
CHI PMCDE Choose the device for ssmulation.

7-26 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

CLEARMAP Clear .MAP File

The CLEARMAP command removes the current MAP file from memory, forcing the debugger
to show disassembled code in the Code Windows instead of source code. Symbols defined using
the SYMBOL command are not affected by this command. (The NOMAP command is identical
to CLEARMAP.)

Syntax:
CLEARNVAP

Example:
CLEARVAP Clears symbols and their definitions.

M68ICS05POM/D 7-27

DEBUGGING COMMAND SET @ MOTOROLA

CLEARSYMBOL Clear User Symbols

The CLEARSYMBOL command removes all the user-defined symbols (created with the
SYMBOL command). Debug information from MAP files, used for source level debugging, is
not affected by the CLEARSY MBOL command.

NOTE
List the current user-defined symbols using the SYMBOL
command.
Syntax:
CLEARSYMBOL
Example:
CLEARSYMBOL Clears user defined symbols.

7-28 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

COLORS Set Simulator Colors

The COLORS command opens the Change Window Colors dialog that lets you choose the text
and background colors for windows in the ICSO5PW simulator. After you set colors options for
the windows, save the changes using the SAVEDESK command. For more information about
using the Change Window Colors dialog, see paragraph 6.22.2.

Syntax:
COLORS

Example:
COLORS Open the colors window.

M68ICS05POM/D 7-29

DEBUGGING COMMAND SET @ MOTOROLA

CYCLES Set Cycles Counter

The CYCLES command changes the value of the cycle counter. The cycle counter counts the
number of processor cycles that have passed during execution. The Cycle Window shows the
cycle counter. The cycle count can be useful for timing procedures.

Syntax:
CYCLES <n>

where:
<n> Integer value for the cycles counter.

Examples:
CYCLES 0 Reset cycles counter.

CY 1000 Set cycle-counter value to 1000.

7-30 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

DASM Disassemble Memory

The DASM command disassembles machine instructions, displaying the addresses and their
contents as disassembled instructions in the debug window.

* If the command includes an address value, one disassembled instruction is shown,
beginning at that address.

» If you enter the command without any parameter values, the software finds the most
recently disassembled instruction then shows the next instruction, disassembled.

* If the command includes startrange and endrange vaues, the software shows
disassembled instructions for the range.

NOTE

If you enter the DASM command with a range, sometimes the
disassembled instructions scroll through the status window too
rapidly to view. In this case, enter the LF command, to record the
disassembled instructions in a logfile, or use the scroll bars in the
status window.

Syntax:
DASM [<address> | <startrange> <endrange>]
where:
<address> First address of three instruction opcodes to be disassembled.
<gtartrange> Starting address for arange of instructions to be disassembl ed.
<endrange> Ending address for arange of instructions to be disassembled.
Examples:
DASM 300
0300 AGE8 LDA #0OES8
DASM 200 208
0200 5F CLRX
0201 A680 LDA #80
0203 B700 STA PORTA
0205 A6FE LDA #FE
0207 B704 STA DDRA

M68ICS05POM/D 7-31

DEBUGGING COMMAND SET @ MOTOROLA

DDRA Set Port A Direction Register

The DDRA command assigns the specified byte value to the port A data direction register
(DDRA). Bits assigned 0 denote input pins; bits assigned 1 denote output pins.

Syntax:
DDRA <n>

where:
<n> The byte value to be placed into DDRA.

Examples:
DDRA FF Set al port A pinsto be outputs.

DDRA 00 Set al port A pinsto be inputs.

7-32 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

DDRB Set Port B Direction Register

The DDRB command assigns the specified byte value to the port B data direction register
(DDRB). Bits assigned 0 denote input pins; bits assigned 1 denote output pins.

Syntax:

DDRB <n>
where:

<n> The byte value to be placed into DDRB.

Examples:

DDRB 03 Set the lower two bits of port B pins as outputs, set the

othersto be inputs.
DDRB FF Set al port B pinsto be outputs.

M68ICS05POM/D 7-33

DEBUGGING COMMAND SET @ MOTOROLA

DUMP Dump Memory to Screen

The DUMP command sends contents of a block of memory to the status window, in bytes,
words, or longs. The optional variant specifies whether to fill the block in bytes (.B, the default),
inwords (\W), or inlongs (.L).

NOTE

When you enter the DUMP command, sometimes the memory
contents scroll through the debug window too rapidly to view.
Accordingly, you can either the LF command to record the memory
locations in alogfile, or use the scroll bars in the status window.

Syntax:
DUW [.B | .W]|] .L] <startrange> <endrange> [<n>]
where:
<startrange> Beginning address of the memory block.
<endrange> Ending address of the memory block (range).
<n> Optional number of bytes, words, or longs to be written on one
line.
Examples:
DUWP CO0 CF Dump array of RAM values, in bytes.
DUMP. W 300 37S Dump ROM code in address 300-37S in words.
DUMP. B 200 300 Dump contents of addresses 200-300 in rows of eight bytes.

7-34 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

EVAL Evaluate Expression

The EVAL command evaluates a numerical term or simple expression, giving the result in
hexadecimal, decimal, octal, and binary formats. In an expression, spaces must separate the
operator from the numerical terms.

NOTE

Octa numbers are not valid as parameter values. Operand values
must be 16 bits or less. If the value is an ASCII character, this
command also shows the ASCII character as well. The parameters
for the command can be a number, or a sequence of: number,
space, operator, space, and number. Supported operations are
addition (+), subtraction (-), multiplication (*), division (/), logical
AND (&), and logical OR (™).

Syntax:
EVAL <n> [<op> <n>]
where:
<n> Alone, the numerica term to be evaluated. Otherwise either
numerical term of a simple expression.
<op> The arithmetic operator (+, -, *, /, &, or) of a simple expression
to be evaluated.
Examples:
EVAL 45 + 32
0077H 119T 0001670 0000000001110111Q "w'
EVAL 100T

0064H 100T 0001440 0000000001100100Q "d"

M68ICS05POM/D 7-35

DEBUGGING COMMAND SET @ MOTOROLA

EXIT or QUIT Exit/Quit Application

The EXIT command terminates the software and closes all windows. The QUIT command is
identical to EXIT.

Syntax:
EXIT

Example:
EXIT Finish working with the program.

7-36 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

GO Begin Program Execution

The GO command starts execution of code at the current program counter (PC) address, or at an
optional specified address.

The G, GO, and RUN commands are identical.

If you enter only one address, that address is the starting address. If you enter a second address,
the execution stops at that address. If you specify only one address, the execution continues until
you press akey, it arrives at a breakpoint, or an error occurs.

NOTE

If you want to see the windows update with information during
execution of code, use the STEPFOR command.

Syntax:
QO [<startaddr> [<endaddr>]]
where:
<startaddr> Optional execution starting address. If the command does not have
a<startaddr> value, execution begins at the current PC value.
<endaddr> Optional execution ending address.
Examples:
€] Begin code execution at the current PC value.
GO 346 Begin code execution at address 346.
G 300 371 Begin code execution at address 300. End code execution
just before the instruction at address 371.
RUN 300 Begin code execution at address 300.

M68ICS05POM/D 7-37

DEBUGGING COMMAND SET @ MOTOROLA

GOMACRO Execute Macro after Break

The GOMACRO command executes the program in the simulator beginning at the address in the
program counter (PC). Execution continues until you press a key, until it arrives at a breakpoint,
or until an error occurs. Afterwards it runs the specified macro file just like the MACRO
command.

Syntax:
GCOMACRO <fi | enane>

where:
<filename> The name of a script file to be executed, with or without extension
.MAC, or a pathname that includes an asterisk (*) wildcard
character. When the asterisk is entered, the command displays a list
of appropriate files, from which you can select the required file.
Example:
GOVACRO AVCALC. MAC Begin code execution at the current PC value; at breakpoint

execute macro AVCALC.MAC.

7-38 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

GOTIL Execute Until Address

The GOTIL command executes code beginning at the address in the program counter (PC).
Execution continues until the program counter contains the specified ending address, or until you
press a key or the Stop button on the ICSO5PW toolbar, or until it reaches a breakpoint, or until
an error occurs.

Syntax:
COTl L <endaddr >

where:
<endaddr> The address at which execution stops.
Example:
GOTI L 2F0 Executes code up to address 2F0.

M68ICS05POM/D 7-39

DEBUGGING COMMAND SET @ MOTOROLA

GOTOCYCLE Execute to Cycle Counter Value

The GOTOCY CLE command executes the program in the simulator beginning at the address in
the program counter (PC). Execution continues until the cycle counter is equal to or greater than
the specified value, or until you press a key or the Stop button on the ICS05PW toolbar, until it
reaches a breakpoint, or an error occurs.

Syntax:
GOTOCYCLE <n>

where:
<n> Cycle-counter value at which execution stops.
Examples:
GOTOCYCLE 100 Execute the program until the cycle counter equals 100.

7-40 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

H Set/Clear Half-Carry Bit

The H command sets or clears the H bit in the condition code register (CCR).

NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR pattern is 111HINZC (H is haf-carry, | is IRQ
interrupt mask, N is negative, Z is zero and C is carry). A letter in
these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:
H Ol 1

Examples:
H1 Setsthe H bit in the CCR.
HO Clear the H bit of the CCR.

M68ICS05POM/D 7-41

DEBUGGING COMMAND SET @ MOTOROLA

HELP Open Help

The HELP command opens the Windows help file for the program. An aternative way to open
the help system isto pressthe F1 key.

Syntax:
HELP

Examples:
HELP Open the help system

7-42 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

I Set/Clear Interrupt Mask

The | command sets or clearsthe | bit of the condition code register (CCR).

NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR pattern is 111HINZC (H is haf-carry, | is IRQ
interrupt mask, N is negative, Z is zero and C is carry). A letter in
these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:
| 0|1
Examples:
| 1 Set the |l bit in the CCR.
I O Clear thel bit of the CCR.

M68ICS05POM/D 7-43

DEBUGGING COMMAND SET @ MOTOROLA

INFO Display Line Information

The INFO command displays information about the line highlighted in the source window.
Information displayed includes the name of the file in the window, the line number, the address,
the corresponding object code, and the disassembled instruction.

Syntax:
I NFO

Example:
| NFO Display information about the cursor line.

Fi | enane: PODTEST. ASM Line number:6
Addr ess: $0100
Di sassenbl y: START 5F CLRX

7-44 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

INPUTA Set Port A Inputs

The INPUTA command sets the ssmulated inputs to port A. The CPU reads this input value when
port A is set as an input port.

NOTE

If the ICS05 circuit board is connected, port A inputs come from
the board, so this command has no effect.

Syntax:
| NPUTA <n>
where:
<n> Eight-bit simulated value for port A.
Example:
| NPUTA AA Simulate the input AA on port A.

M68ICS05POM/D 7-45

DEBUGGING COMMAND SET @ MOTOROLA

INPUTB Set Port B Inputs

The INPUTB command sets the simulated inputs to port B. The CPU reads this input value when
port B is set as an input port.

NOTE

If the ICSO5 circuit board is connected, port B inputs come from
the board, so this command has no effect.

Syntax:
| NPUTB <n>
where:
<n> Eight-bit simulated value for port B.
Example:
| NPUTB 01 Simulate the input 01 on port B.

7-46 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

INPUTS Show Port Inputs

The INPUTS command shows the simulated input values to port A and B (entered via the
INPUTA or INPUTB commands).
NOTE

If the ICS05 circuit board is connected, this command shows input
values from the board.

Syntax:
I NPUTS

Example:
I NPUTS Show 1/0 port input values.
Port A - AA
Port B - 01

M68ICS05POM/D 7-47

DEBUGGING COMMAND SET @ MOTOROLA

IRQ Set IRQ Pin State

The IRQ command assigns the state value of the MCU IRQ pin. To see the current simulated
value on the pin, enter this command without any parameter value. The externa interrupt is
simulated as a level or edge/leve triggered interrupt, depending on the IRQ bit in the MOR
register. (The INT command isidentical).
NOTE

If the ICS05 circuit board is connected, the IRQ pin value come

from the board, so this command has no effect.
Syntax:

IRQ [0 | 1]

Examples:
I NT O Assign O to the IRQ pin.

IRQ 1 Assign 1 to the IRQ pin.

7-48 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

LISTOFF Turn Off Step Listing

The LISTOFF command turns off the screen listing of the step-by-step information for stepping.
Register values and program instructions do not appear in the status window as code runs. (This
display state is the default when the software isfirst started.)

To turn on the display of stepping information, use the LISTON command.

Syntax:
LI STOFF

Example:
LI STOFF Do not show step information.

M68ICS05POM/D 7-49

DEBUGGING COMMAND SET @ MOTOROLA

LISTON Turn On Step Listing

The LISTON command turns on the screen listing of the step by step information during
stepping. The register values and program instructions are displayed in the status window while
running code. The values shown are the same values seen by the REG instruction.

To turn off this step display, use the LISTOFF command.

Syntax:
LI STON

Example:
LI STON Show step information.

7-50 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

LOAD Load S-Records

The LOAD command loads an S-record (*.S19) object file and associated map file into the
debugger. Entering this command without a filename value brings up a list of .S19 files in the
current directory. Select a file for loading from this list. Upon loading, if the reset vector is
defined in the code, the debugger sets the PC to that address.

Syntax:
LOAD [<fil enane>]

where:
<filename> The name of the .S19 file to be loaded. The .S19 extension can be
omitted. The filename value can be a pathname that includes an
asterisk (*) wildcard character. If so, the command displays a
window that lists the files in the specified directory, having the
.S19 extension.
Examples:
LOAD PROGL. S19 Load file PROG1.S19 and its map file into the simulator at
the load addressesin thefile.
LOAD PROX Load file PROG2.S19 and its map file into the simulator at
the load addresses in thefile.
LOAD A Display the names of the .S19 files on the diskette in drive
A:, for user selection.
LOAD Display the names of the .S19 files in the current directory,

for user selection.

M68ICS05POM/D 7-51

DEBUGGING COMMAND SET @ MOTOROLA

LOADDESK Load Desktop Settings

The LOADDESK command loads the debugger window (desktop) settings for window position,
Size, and visibility, allowing you to choose how the windows will be set up for the project.

Use the SAVEDESK command to save the debugger window settings to the desktop file.

Syntax:
LOADDESK

Example:
LOADDESK Get window settings from desktop file.

7-52 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

LOADMAP Load Map File

The LOADMAP command loads into the ICSO5PW simulator a map file that contains source
level debug information. Entering this command without a filename parameter brings up a list of
.MAP files in the current directory. From this a file can be selected directly for loading map file
information.

Syntax:
LOADMAP [<fi | enane>]

where:
<filename> The name of a map file to be loaded. The .MAP extension can be
omitted. The filename value can be a pathname that includes an
asterisk (*) wildcard character; If so, the command displays a lists
of all filesin the specified directory that have the .MAP extension.
Examples:
LOADVAP PROG. MAP Load map file PROG.MAP into the host computer.
LOADVAP PROGL Load map file PROG1.MAP into the host computer.
LOADMVAP A: Displays the names of the .MAP files on the diskette in
drive A:
LOADVAP Display the names of the .MAP filesin the current
directory.

M68ICS05POM/D 7-53

DEBUGGING COMMAND SET @ MOTOROLA

LOGFILE Open/Close Log File

The LOGFILE command opens an external file to receive log entries of the commands entered in
the command line of the ICSO5PW Status Window and the system responses to those commands
that appear in the Status Window message area.

» If the specified file does not exist, this command creates the file.

» If thefile specified file exists, you can enter an optional parameter to specify whether
to overwrite existing contents (R, the default) or to append the log entries (A). If this
parameter is omitted, a prompt window asks if you want to overwrite the existing file
or append information to the existing file.

While logging is in effect, any line appended to the command log window is also written to the
log file.

Logging continues until another LOGFILE or LF command is entered without any parameter
values. This second command disables logging and closes the log file.

The command interpreter does not assume afilename extension.

Syntax:
LF [<filenane> [<R | A>]]

where:
<filename> The filename of the log file (or logging device to which the
log is written).
Examples:
>LF TEST.LOG R Start logging. Overwrite file TEST.LOG (in the current
directory) with all lines that appear in the status window.
>LF TEMP. LOG A Start logging. Append to file TEMP.LOG (in the current
directory) all lines that appear in the status window.
>LOGFI LE (If logging is enabled): Disable logging and close the log

file.

7-54 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

MACRO Execute Batch File

The MACRO command executes a macro file, a file that contains a sequence of debug
commands. Executing the macro file has the same effect as executing the individual commands,
one after another. The SCRIPT command isidentical.

Entering this command without a filename value brings up a list of macro ((MAC) files in the
current directory. You can select afile for execution directly from thislist.

NOTE

A macro file can contain the MACRO command, alowing you to
next macro files up to 16 levels deep.

The most common use of the REM and WAIT commands is within
macro files. The REM command displays comments while the
macro file executes; the WAIT command establishes a pause
between the execution of the macro file commands.

If a startup macro file is in the directory, startup routines run the macro file each time the
application starts. See the STARTUP command for more information.

Syntax:
MACRO <fi | enane>

where:
<filename> The name of amacro file to be executed, with or without extension
.MAC. The filename can be a pathname that includes an asterisk
(*) wildcard character. If so, the software displays a list of macro
files, for selection.
Examples:
MACRO | NI T. MAC Execute commandsin file INIT.MAC.
SCRI PT * Display names of all .MAC files (then execute the selected
file).
MACRO A: * Display names of al .MAC filesin drive A (then execute
the selected file).
MACRO Display names of all .MAC filesin the current directory,

then execute the selected file.

M68ICS05POM/D 7-55

DEBUGGING COMMAND SET @ MOTOROLA

MACROEND Stop Saving Commands to Batch File

The MACROEND command closes the macro file in which the software has saved debug
commands. (The MACROSTART command opened the macro file). This stops saving debug
commands to the macro file.
Syntax:

MACRCEND

Example:

MACRCEND Stop saving debug commands to the macro file, then close
thefile.

7-56 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

MACROSTART Save Debug Commands to Batch File

The MACROSTART command opens a macro file and saves all subsequent debug commands to
that file for later use. This file must be closed by the MACROEND command before the
ICSO5PW session is ended.

Syntax:
MACROSTART [<fil enane>]

where:
<fil enane> The name of the macro file to save commands. The .MAC
extension can be omitted. The filename can be a pathname
followed by the asterisk (*) wildcard character; if so, the
command displays alist of all filesin the specified directory
that have the .MAC extension.
Example:

MACROSTART TEST. MAC Save debug commandsin macro file TEST.MAC

M68ICS05POM/D 7-57

DEBUGGING COMMAND SET @ MOTOROLA

MD Display Memory at Address

The MD command displays (in the memory window) the contents of memory locations
beginning at the specified address. The number of bytes shown depends on the size of the
window and whether ASCII values are displayed. If alog file is open, this command also writes
thefirst 16 bytes to the log file. The MD and SHOW commands are identical.

Syntax:

MD <addr ess>

where:
<address> The starting memory address for display in the upper left corner of
the memory window.
Examples:
MD 200 Display the contents of memory beginning at address 200.
SHOW 100 Display the contents of memory beginning at address 100.

7-58 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

MM Modify Memory

The MM command directly modifies the contents of memory beginning at the specified address.
The optional variant specifies whether to fill the block in bytes (.B, the default), in words (\W),
or inlongs (.L). If, however, the command has only an address value, the Modify Memory dialog
(Figure 7-3) appears showing the specified address and its present value. Use the dialog to enter a
new value for the address or to modify the address type by selecting 8-bit bytes, 16-bit words, 32-
bit longs. To modify severa memory locations from this dialog, enter the new value in the New
Value text box and press the >> button to increment the current address, or the << button to
decrement the current address, or the = button to display the same address.
T I - |
fuirrresm [3050 |
Pregent Wal
FEyl CwWord T Losg
Hewioiee B2 |
= D | Iﬂll'lﬂl]

<« -] [
Figure 7-3. Modify Memory Dialog

If the MM command includes optional data values, the software assigns the values to the
specified addresses sequentially, then the command ends. No window appearsin this case.

Syntax:
MM [.Bl.W.L] <address>[<n> ...]

where:
<address> The address of the first memory location to be modified.
<n> The value(s) to be stored (optional).
Examples:
With only one address:
MM 90 Start memory modify at address $90.
MM 300 00 Assign value 00 to address $300.
MM 1000001 1011 Assign values 00-11 to bytes 100-103.
MM L 200 123456 Place long value $123456 at address $200.

M68ICS05POM/D 7-59

DEBUGGING COMMAND SET @ MOTOROLA

N Set/Clear Negative Bit

The N command sets or clearsthe N bit of the condition code register (CCR).

NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR pattern is 111HINZC (H is haf-carry, | is IRQ
interrupt mask, N is negative, Z is zero and C is carry). A letter in
these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:
N 0| 1

Example:
N 1 Set the N bit of the CCR.

N O Clear the N bit of the CCR.

7-60 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

NOBR Remove Breakpoints

The NOBR command removes one or al active breakpoints. If this command has an address
value, it removes the breakpoint at that address. If this command has no parameter values, it
removes al current breakpoints. To set breakpoints use the BR command.

An alternative way for clearing a breakpoint in the code window is to position the cursor on a
line of code, then press the right mouse button and select Toggle Breakpoint at Cursor menu
item. This removes the breakpoint from the line.

Syntax:
NOBR [<addr ess>]

where:
<address> Optional address of a single breakpoint to be removed.
Examples:
NOBR Remove all current instruction breakpoints.
NOBR 120 Remove the instruction breakpoint at address 120.

M68ICS05POM/D 7-61

DEBUGGING COMMAND SET @ MOTOROLA

NOSYMBOL Clear User Symbols

The NOSYMBOL command removes all user defined symbols created using the SY MBOL from
memory. Symbols are created using the SYMBOL command. Symbols defined via a loaded
MAP file are not affected.

Syntax:
NOSYMBOL

Example:
NOSYMBCOL Clears user defined symbols and their definitions.

7-62 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

PC Set Program Counter

The PC command assigns the specified value to the MCU program counter. As the PC aways
points to the address of the next instruction to be executed, assigning a new PC value changes the
flow of code execution; the code windows change accordingly. The value entered with the
command is displayed in the CPU Window.

An aternative way for setting the PC in a code window is to position the cursor on aline of code,
then press the right mouse button and select the Set PC at Cursor menu item. This assigns the
address of that line to the PC.

Syntax:

PC <address>

where;

<address> The new PC vaue.
Example:

PC 0200 Sets the PC value to 0200.

M68ICS05POM/D 7-63

DEBUGGING COMMAND SET @ MOTOROLA

POD Change Serial Port

The POD command connects to the ICS05 circuit board through the specified serial (COM) port.
If successful, this command responds with the current status of ports, reset, and IRQ pins on the
board. The command also shows the version of the board.

Syntax:
POD <n>

where;

<n> The number (1...8) of a seria port (COM1 through COM8) on the
PC.

Example:
PCD 1 Connect to serial port COM 1.

Port A - 80
Port B - 00
Reset - 1
IRQ - 1

Version - 01

7-64 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

PORTA or PRTA Set Port A Output Latches

The PORTA command assigns the specified value to the port A output register latches. (The
PRTA command is an alternate form of the PORTA command).

NOTE

If the ICSO5 circuit board is connected, the system sends the n
parameter value of this command to the board.

Syntax:
PORTA <n>
where:
<n> The new value for the port A output latches.
Example:
PORTA FF Set al port A output latches high.

M68ICS05POM/D 7-65

DEBUGGING COMMAND SET @ MOTOROLA

PORTB or PRTB Set Port B Output Latches

The PORTB command assigns the specified value to the port B output register latches. (The
PRTB command is an aternate form of the PORTB command).

NOTES

If the ICSO5P circuit board is connected, the system sends the n
parameter value of this command to the board.

Syntax:
PORTB <n>
where:
<n> The new value for the port B output latches.
Example:
PORTB 03 Set the port B output latches to 03.

7-66 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

PROGRAM Start Programmer

The PROGRAM command starts the programmer. The programmer is used for such procedures
as programming, verifying, blank-checking the sample EPROM, and programming the MOR
byte for the desired device.

Programming software installed on the host computer can control the M68ICSO5P pod
programming socket (U2). The host computer can send RESET, CLOCK, DATA, and other
control signals from to the pod through the serial connection.

After entering the PROGRAM command and before beginning to program the EPROM, follow
the directions in the popup windows for setting the power switches and control signals. After
these have been set, the Pick window displays the command choices summarized in Table 7-3.

During programming, you may use the three programming windows:

Pick Window

The Pick Window (Figure 7-4) displays all programming actions and functions.

TH Prasm o= Bty LFR0S Fan HO0T |
P Pyspam MO byis @ dervics
FI Prng am PP i

G Gt Eowd e Py g e

Figure 7-4. PROGO5P Programmer Pick Window

Status Window

The Programmer Status Window accepts programming commands on the command line or from
the Pick Window, then displays the command results in the message area. It isidentical in form
and function to the ICSO5PW Status Window.

File Window

The Programmer File window identifies the filenames of the downloaded and uploaded files.

M68ICS05POM/D 7-67

DEBUGGING COMMAND SET @ MOTOROLA

PROGRAM (continued)

Table 7-3. PROGRAM Commands

Cmd Function Description

BC Blank Check - $00 Checks whether the device has been erased.
everywhere?

PB Program Both EPROM then Programs all of the EPROM space, then the MOR
MOR byte of the HC705P9 from the download file specified

by the SD programming command and shown in the
Programmer Files Window.

PE Program EPROM only Programs only the EPROM space of the HC705P9
(not the MOR) from the file specified in the file
window.

PM Program MOR byte in device | Asks for a value for the MOR byte and then programs
that location only in the HC705P9.

QU | Quit; Exit the Programmer Powers down the programmed device and returns to
the simulator.

SD Specify Dnld (Download) File = Gives the name of the S19 file to be programmed
(shown in file window).

SuU Specify Upld (Upload) File Gives the name of the S19 file in which to upload
code (shown in file window).

UL Upload to Upld S-Rec File Reads the entire EPROM space (including MOR byte)
of the HC705P9 part and places it into the upload file.
Verifies that an upload file has been specified.

VE Verify to Simulator OR -Verify | Verifies the device to the download file specified in
to Dnld S-Rec File the status window.

To execute a programming command in the Pick Window, double-click on the command (or
select the command and press the OK button).

The programming commands are saved in a file. The default file for downloading command
comes from simulator memory. If you wish to use another S19 file to program the device, use the
SD command to open the dialog and enter or select the new download filename. The
Programmer Files window shows the download and upload filenames. When MCU programming
completes, the ICSO5PW simulator interface returns.

Syntax:
PROGRAM

7-68 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

PROGRAM (continued)

Example:
PROGRAM Starts the programmer.

M68ICS05POM/D 7-69

DEBUGGING COMMAND SET @ MOTOROLA

R Use Register Files

The R command pulls up windows for the register files (sold separately by P&E) and starts
interactive setup of such system registers as the I/O, timer, and COP.

Entering this command opens the register files window, which can present a list of register files
for the device (if set up previously). Selecting afile brings up a display of values and significance
for each bit of the register. The user can view any of the registers, modify their values, and store
the results back into memory.

An aternate way to bring up the register files window isto press the Register Files speed button.

Syntax:
R

Example:
R Start interactive system register setup.

7.70 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

REG Show Registers

The REG command displays the contents of the CPU registers in the Status window. (The
STATUS command isidentical to the REG command.)

Syntax:
REG

Example:
REG Displays the contents of the CPU registers.

M68ICS05POM/D 7-71

DEBUGGING COMMAND SET @ MOTOROLA

REM Place Comment in Batch/Macro File

The REM command lets you display comments in a macro file. When the macro file executes,
the text comment appears in the status window.

Syntax:
REM <t ext >
where:
<text> A comment to be displayed when a macro file is executing.
Example:
REM Pr ogr am executi ng; Display the message Program executing during macro
file execution.

7-72 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

RESET Simulate Processor Reset

The RESET command simulates a reset of the MCU and sets the program counter (PC) to the
contents of the reset vector. This command does not start execution of user code. (To reset and
execute code, use the RESETGO command.)

Syntax:
RESET

Example:
RESET Simulate reset of the MCU.

M68ICS05POM/D 7-73

DEBUGGING COMMAND SET @ MOTOROLA

RESETGO Reset and Restart MCU

The RESETGO command simulates a reset of the MCU, sets the program counter (PC) to the
contents of the reset vector, then starts execution from that address.

Syntax:
RESETGO

Example:
RESETGO Simulate reset of the MCU and start execution of code.

7-74 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

SAVEDESK Save Desktop Settings

The SAVEDESK command saves window position, size, and other desktop settings. Opening the
application or entering the LOADDESK command |oads the saved settings.

Syntax:
SAVEDESK

Example:
SAVEDESK Save window settings for the application.

M68ICS05POM/D 7-75

DEBUGGING COMMAND SET @ MOTOROLA

SHOWBREAKS Display Breakpoint Window

The SHOWBREAKS command brings up the Breakpoint Window that displays the breakpoints
used in the current debugging session. Breakpoints can be modified through this window

Syntax:
SHOABREAKS

Example:
SHOWBREAKS Open the breakpoint window.

7.76 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

SHOWCODE Display Code at Address

The SHOWCODE command displays code in the code windows beginning at the specified
address, without changing the value of the program counter (PC). The code window shows either
source code or disassembly from the given address, depending on which mode is selected for the
window. This command is useful for browsing through various modules in the program. To
return to code where the PC is pointing, use the SHOWPC command.

Syntax:
SHONCODE <addr ess>

where:
<address> The address or label where code is to be shown.
Example:
SHOWCCODE 200 Show code starting at location $200.

M68ICS05POM/D 7-77

DEBUGGING COMMAND SET @ MOTOROLA

SHOWMAP Show Information in Map File

The SHOWMAP command lets you view information from the current map file stored in the
memory. All symbols defined in the source code used for debugging will be listed. The debugger
defined symbols, defined with the SYMBOL command, will not be shown. The MAP command
isidentical to the SHOWMAP command.

Syntax:
SHOAWAP

Example:
SHOWAP Shows symbols from the loaded map file and their values.

7.78 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

SHOWTRACE Display Trace Window

The SHOWTRA CE command displays the trace window, showing the last 1024 instructions that
were executed after the TRACE command is used.

Syntax:
SHOWTRACE

Example:
SHOWIRACE Open the trace window.

M68ICS05POM/D 7-79

DEBUGGING COMMAND SET @ MOTOROLA

SNAPSHOT Save Window Data to Log File

The SNAPSHOT command sends textual information about the debugger windows to the open
log file. If no log fileis open, the command has no effect.

Syntax:
SNAPSHOT

Example:
SNAPSHOT Save window data to the log file.

7-80 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

SP Set Stack Pointer

The SP command assigns the specified value to the stack pointer (SP) used by the CPU. The
value entered with the command should be reflected in the CPU Window.

Syntax:

SP <n>

where:

<n> The new stack pointer value.

Example:
SP $EO Set the stack pointer value to $EO.

M68ICS05POM/D 7-81

DEBUGGING COMMAND SET @ MOTOROLA

SS Execute Source Step(s)

The SS command steps through a specified number of source code instructions, beginning at the
current program counter (PC) address value, then halts. All windows are refreshed as each
instruction is executed. This makes the SS command useful for high level language compilers
(such as C) so that the user can step through compiler source code instead of assembly
instructions.

If the number argument is omitted, one source instruction is executed. If the SS command is
entered with an n value, the command steps through n source instructions.

Syntax:

SS [<n>]
where:

<n> number of instructions to step through.

Examples:

SS Step through the instruction at the PC address value.

SS 8 Step through eight instructions, starting at the current PC

address value.

7-82 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

STorSTEPor T Execute Single Step

The STEP command steps through a specified number of assembly instructions, beginning at the
current program counter (PC) address value, then halts. All windows are refreshed as each
instruction is executed. If the number argument is omitted, one instruction is executed. If you
enter the STEP command with a parameter value, the command steps through that many
instructions. (The ST and T commands are identical to the STEP command.)

Syntax:

STEP [<n>]
where:

<n> The hexadecimal number of instructions to be executed by each
command.

Examples:

STEP Execute the assembly instruction at the PC address value.

ST 2 Execute two assembly instructions, starting at the PC

address value.

M68ICS05POM/D 7-83

DEBUGGING COMMAND SET @ MOTOROLA

STACK Show Stack Window

The STACK command opens the HC05 Stack Window, which shows the stack pointer (SP)
value, data stored on the stack, and results of an RTS or RTI instruction.

Syntax:
STACK

Example:
STACK Open the stack window.

7-84 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

STEPFOR Step Forever

The STEPFOR command continuously executes instructions, one at a time, beginning at the
current Program Counter (PC) address. Execution continues until an error condition occurs, until
it reaches a breakpoint, or until you press a key or the Stop button on the ICSO5PW toolbar. All
windows are refreshed as each instruction is executed.

Syntax:
STEPFOR

Example:
STEPFOR Step through instructions continuously.

M68ICS05POM/D 7-85

DEBUGGING COMMAND SET @ MOTOROLA

STEPTIL Step Until Address

The STEPTIL command continuously steps through instructions beginning at the current
program counter (PC) address until the PC value reaches the specified address. Execution
continues to the specified address or until you press a key or the Stop button on the ICSO5PW
toolbar, or it reaches a breakpoint, or until an error occurs.

Syntax:
STEPTI L <address>

where:
<address> Execution stop address. This must be an instruction address.
Example:
STEPTI L 0200 Execute instructions continuously until PC value is 0200.

7-86 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

SYMBOL Add Symbol

The SYMBOL command creates a new symbol, which can be used anywhere in the debugger, in
place of the symbol value. If thiscommand is entered with no parameters, it will list the current
user-defined symbols. If parameters are specified, the SYMBOL command will create a new
symbol.

The symbol label is case-insensitive and has a maximum length of 16T. It can be used with the
ASM and MM commands and replaces all addresses in the Code and V ariables windows.

Syntax:
SYMBCL [</ abel > <val ue>]

where:
<label> The ASCII-character string label of the new symbol.
<value> The value of the new symbol (label).
Examples:
SYMBOL Show the current user-defined symbols.
SYMBOL tinmer_control $08 Define new symbol “timer_control”, with value

$08. Subsequently, to modify the value of
“timer_control”, enter the command:
MM timer_control new val ue

M68ICS05POM/D 7-87

DEBUGGING COMMAND SET @ MOTOROLA

TRACE Enable/Disable Tracing

The TRACE command enables or disables instruction captures. When tracing is enabled, the
debugger records instructions in a 1024-element circular buffer. Note that tracing slows
execution somewhat.

The debugger disassembles captured information when buffer contents are viewed through the
trace window. To view tracing results, use the SHOWTRACE command. If tracing is not enabled
or if atrace dlot is empty, the Trace Window will display the message No Trace Available. To
clear the Trace Window, toggle tracing OFF and then ON using the TRACE command.

Syntax:

TRACE

Example:
TRACE Enable (or disable) instruction tracing.

7-88 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

UPLOAD_SREC Upload S Record to Screen

The UPLOAD_SREC command uploads the contents of the specified memory block (range), in
.S19 object file format, displaying the contents in the status window. If a log file is opened,
UPLOAD_SREC puts the information into the log file as well.

NOTE

If the UPLOAD_SREC command is entered, sometimes the
memory contents scroll through the debug window too rapidly to
view. Accordingly, either the LOGFILE command should be used,
which records the contents into a file, or use the scroll bars in the
status window.

Syntax:
UPLOAD SREC <startrange> <endrange>
where:
<dtartrange> Beginning address of the memory block.
<endrange> Ending address of the memory block (range)
Example:

UPLOAD_SREC 300 7FF Upload the 300-7FF memory block in .S19 format.

M68ICS05POM/D 7-89

DEBUGGING COMMAND SET @ MOTOROLA

VAR Display Variable

The VAR command displays the specified address and its contents in the Variables window for
viewing during code execution. Variants of the command display a byte, a word, a long, or a
string. As the value at the address changes, the variables window updates the value. The
maximum number of variablesis 32.

In ASCII displays of variables, control characters or other non-printing characters appear as
periods (.). Byte, word, long, or string variants determine the display format:

* Byte (.B): hexadecimal and binary (the default)

* Word (.W): hexadecimal and decimal

e Long (.L): hexadecimal and decimal

» String (.S): ASCII characters

The optional <n> parameter specifies the number of string characters to be displayed; the default
valueis1l. The<n> parameter has no effect for byte, word, or long values.

Syntax:
VAR [.Bl.W.L|.S] <address> [<n>]

where:
<address> The address of the memory variable.
<n> Optional number of characters for a string variable; default value is
1, does not apply to byte or word variables.

Examples:

VAR CO Show byte value of address CO (hex and binary)

VAR B D4 Show byte value of address D4 (hex and binary)

VAR. W EO Show word value of address EO (hex & decimal)

VAR S C0 5 Show the five-character ASCII string at address CO

7-90 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

VERSION or VER Display Software Version

The VERSION command displays the version and date of the software. (VER is an aternate
form of this command.)

Syntax:
VERSI ON

Examples:
VERSI ON Display version and date of the software.

VER Display version and date of the software.

M68ICS05POM/D 7-91

DEBUGGING COMMAND SET @ MOTOROLA

WAIT Wait for n Cycles

The WAIT command delays ssmulator command execution by the specified number of cycles.
This command is used in MACRO files to control when inputs come into the ssimulator. If a
WAIT command is encountered, control is passed back to the keyboard. Then the macro file
execution waits for a command to be entered such as GO or STEP, which starts MCU execution
once again. As soon as the number of cycles that pass is equal to the <n> value of the WAIT
command, the simulator resumes executing commands of the macro file until another WAIT is
encountered or the two mentioned conditions happens again.

Syntax:
WAI T <n>
where:
<n> The hexadecimal number of cyclesto wait.
Example:
VAIT A Delay command execution for 10 MCU cycles.

7-92 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

WHEREIS Display Symbol Value

The WHEREIS command displays the value of the specified symbol. Symbol names are defined
through source code or the SY MBOL command. Alternatively, this command returns the symbol
at a specified address.

Syntax:
WHEREI S <synbol > | <address>

where:
<symbol> A symbol listed in the symbol table.
<address> Address for which a symbol is defined.
Examples:
WHEREI S START Display the symbol START and its value.
WHEREI S 0300 Display the value 0300 and its symbol name if any.

M68ICS05POM/D 7-93

DEBUGGING COMMAND SET @ MOTOROLA

X or XREG Set X Register Value

The X command sets the index (X) register to the specified value. The value entered with the
command is displayed in the CPU Window. (The X command is identical to the XREG
command.)

Syntax:

X <val ue>

where:
<value> The new value for the X register.

Examples:
X 05 Set the index register value to 05.
XREG FO Set the index register value to FO.

7-94 M68ICS05POM/D

@ MOTOROLA DEBUGGING COMMAND SET

Z Set/Clear Zero Bit

The Z command sets or clears the Z bit in the condition code register (CCR).

NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR pattern is 111HINZC (H is haf-carry, | is IRQ
interrupt mask, N is negative, Z is zero and C is carry). A letter in
these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:
Z 0|1

Examples:
Z0 Clear the Z hit of the CCR.
Z1 Set the Z bit of the CCR.

M68ICS05POM/D 7-95

DEBUGGING COMMAND SET @ MOTOROLA

7-96 M68ICS05POM/D

@ MOTOROLA EXAMPLE PROJECT

CHAPTER 8
EXAMPLE PROJECT

8.1 OVERVIEW

This section provides information that will guide you through a first-time use of the ICSO5PW
software and through atypical setup of the WinIDE.

8.2 SETTING UP A SAMPLE PROJECT

To demonstrate how source code to be assembled is handled using the ICSO5PW simulator,
WinIDE editor, and CASMO5W assembler software as an integrated development environment,
consider as an example the following typical project.

NOTE

The sample files referred to are referenced for illustration purposes
only and are not provided with the software. Create your own
*.ASM files for your projects using the ICSO5PW software
components. For information about using files created by other
assemblers, see paragraph 5.4.4.

8.2.1 Set Up the Environment

To begin the project, start the WinIDE editor and establish the desktop and environment settings
for the project:

1. Start the WinIDE editor by selecting the icon from the Windows 95 Start Menu or by
double-clicking on the icon ICSO5PW Program Group in the Windows 3.1 Program
Manager.

2. In the WinIDE editor, choose the Setup Environment option from the File menu to
open the Environment Settings dial og.

M68ICS05POM/D 8-1

EXAMPLE PROJECT @ MOTOROLA

3. Enter environment options for the modules of the WinIDE development environment,
represented by the General Editor, General Environment, EXE1, EXE2, and
Assembler/Compiler tabs. For the example project:

a. In the General Environment tab, choose the environment options you prefer.
In the %FILE% Parameter passed to external program is text box, enter the
path and filename (MAIN.ASV).

b. Inthe General Editor tab, choose the editing options you prefer.

c. In the EXE1l tab, make sure the EXE Path text box points to the
ICSO5PW.EXE path and filename, and that the Options text box indicates the
proper communications port (if the pod isto be used).

d. Inthe Assembler/Compiler tab, make sure these options are sel ected:

« The EXE Path text box indicates the path and filename for the
CASMO5W.EXE.

» The Typetext box specifiesthe P& E CASMWxx Assembler.

* To view the CASMO5W window during assembly, check the Show
Assembler Progress option in the Assembly Preferences section of the
tab.

4. Pressthe OK button to save the settings made in the Environment Settings dial og tabs
and close the dialog.

Y ou have now set up the environment for your project. To saveit for later use:
1. Inthe WinIDE, select the Save Project As.. . . option from the Environment menu.

2. In the dialog box, enter a path and a descriptive project filename with the PPF
extension. Place the project file in the directory where the source files will be located.

8.2.2 Createthe SourceFiles

Create new or edit existing source code files using the WinlDE editor:

1. From the File menu, choose the New File option to create a blank source window in
which you can enter source code (or open an existing file using the Open File option).
You can al the source code files in the WinIDE editor and work on them
individually.

2. When you have created the new file or edited the existing file, from the File menu,
choose the Save File option to assign a path and filename to the source file (or choose
the Save File As. . . option to assign a new path and filename to an existing file).

3. Create al the source code files required for the project.

8-2 M68ICS05POM/D

@ MOTOROLA EXAMPLE PROJECT

The example project consists of 12 source code files created in the WinIDE editor. The files are
then assembled into *.ASM files using WinIDE Assemble/Compile toolbar button. The 12 files
arethen listed in a separate file MAIN.ASM.

The MAIN.ASM file consists of $INCLUDE functions, each followed by the filename for the
source code file, followed by an optional comment describing the function of the code in that
file. Using the $INCLUDE function in a main file lets you organize your source code logically
into a number of small files, ultimately making it easier to develop, manage, and work with the
source code. For more information about using the $INCLUDE function, see paragraph 5.6.4.

The example MAIN.ASM file:

kkhkkhkkhkkhkhkkhkkhkhkkhhkhkhkhkkhhkhkhhkkhhkhkkhhkhkhkkhhkhkhkkhhkkhhkhkhkk khkhkkhkkhkhkkikkhkhkkikkkkx*

I nclude fil es

kkhkkhkkhkkhkkhkkhkhkkhhkhkhkhkkhhkhkhhkkhhkhkkhhkhkhkkhhkhkhkkhkhkkhhkhkhkk khkhkhkkhkhkkhkkhkhkkikkkkx*

$i ncl ude "equates. asnf
$include "init.asnf

$i ncl ude "charge. asnt
$i ncl ude "dcharge. asnt
$i ncl ude "options. asnt
$i ncl ude "m sc. asnf

$i ncl ude "readv. asnt
$i ncl ude "isr.asnt

$i ncl ude "di spl ay. asnf
$i ncl ude "eeprom asnt
$i ncl ude "text.asnt

$i ncl ude "vectors. asnt

8.2.3 Assemblethe Project

Now you are ready to assemble your project. Inthe WinIDE, follow these steps:

1. With the MAIN.ASM file in the active window, press the Assemble/Compile File
button (third button from the left) on the WinIDE toolbar to start the assembler from
the WinIDE editor.

2. The assembler concatenates the files in the source code window, assembles them, and
creates the output MAIN.ASM file. MAIN.ASM replaces any previous assembly code
file of the same name in the same directory.

3. If the assembler encounters errors during assembly, the assembler stops and the first
error is displayed highlighted in red in the source file. To correct the errors, click on
the Debugger (EXEL) toolbar button (left-most button) on the WinIDE toolbar to
open or move to the ICSO5PW simulator to debug the source code. When you have
finished debugging the code in the ICSO6PW simulator, return to the WinIDE editor
by clicking the Back to Editor button (the left-most button) in the ICS05PW toolbar.

4. Continue assembling, debugging, and editing the source files until the assembly
compl etes successfully.

M68ICS05POM/D 8-3

EXAMPLE PROJECT @ MOTOROLA

5. Based on the Output Control options selected in the Assembler/Compiler tab of the
Environment Settings dialog, the assembler creates additional output files with the
filename of the main file and an extension which indicates the file type. The S19 and
MAP files are required; the LST fileis optional.

a. MAIN.S19: Motorola S-Record (S19) object code file that you can download
into the simulator.

b. MAIN.MAP: Map file containing information necessary for source level
debugging

c. MAIN.LST: Listing file.

6. The CASMO5W window displays during assembly, showing the files and progress of
the assembler in the Status area. When assembly completes successfully, the
assembler window appears like the one shown in Figure 8-1.

Hain File: . SANMPLE-THEAIHTASEH

Comrmndl File - . SANMPLE-TBLAIHIASH

Fa o€

Cuiist Ling = 11 Talal Limise 150
B o]
Figure 8-1. CASM 05W Window

8-4 M68ICS05POM/D

@ MOTOROLA S-RECORD INFORMATION

APPENDIX A
S-RECORD INFORMATION

A.l OVERVIEW

The Motorola S-record format was devised for the purpose of encoding programs or data filesin
aprintable format for transport between computer platforms. The format also provides for editing
of the S-records and monitoring the cross-platform transfer process.

A.2 SRECORD CONTENT

Each S-record is a character string composed of several fields which identify:
* record type
* record length
* memory address
* code/data
» checksum

Each byte of binary datais encoded in the s-record as a two-character hexadecimal number:
» Thefirst character represents the high-order four bits of the byte
» The second character represents the low-order four bits of the byte

The five fields that comprise an S-record are shown in the Table A-1.

Table A-1. S-Record Fields

TYPE = RECORD LENGTH = ADDRESS @ CODE/DATA | CHECKSUM |

M68ICS05POM/D A-1

S-RECORD INFORMATION @ MOTOROLA

The S-record fields are described in Table A-2.

Table A-2. S-Record Field Contents

Printable
Field Characters Contents

Type 2 S-record type — SO, S1, etc.

Record 2 Character pair count in the record, excluding the type

Length and record length.

Address 4,6,0r8 2-, 3-, or 4-byte address at which the data field is to be
loaded into memory

Code/Data 0-2n From O to n bytes of executable code, memory
loadable data, or descriptive information. For
compatibility with teletypewriter, some programs may
limit the number of bytes to as few as 28 (56 printable
characters in the S-record)

Checksum 2 Least significant byte of the one’s complement of the
sum of the values represented by the pairs of
characters making up the record length, address, and
the code/data fields

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record may have an
initial field to accommodate other data such as line number generated by some time-sharing
systems.

Accuracy of transmission is ensured by the record length (byte count) and checksum fields.

A.3 SRECORD TYPES

Eight types of S-records have been defined to accommodate the several needs of the encoding,
transport, and decoding functions. The various Motorola upload, download, and other record
transport control programs, as well as cross assemblers, linkers, and other file-creating or
debugging programs, utilize only those S-records which serve the purpose of the program. For
specific information on which S-records are supported by a particular program, consult the user
manual for the program.

NOTE

The ICS05PW supports only the SO, S1, and S9 record types. All
data before the S1 record is ignored. Thereafter, all records must be
S1 type until the S9 record, which terminates data transfer.

A-2 M68ICS05POM/D

@ MOTOROLA S-RECORD INFORMATION

An S-record format may contain the record typesin Table A-3.

Table A-3. S-Record Types

Record
Type Description
SO Header record for each block of S-records. The code/data field may contain any
descriptive information identifying the following block of S-records. The address
field is normally zeroes.
S1 Code/data record and the two-byte address at which the code/data is to reside.

S2-S8 Not applicable to ICSO5PW

S9 Termination record for a block of S1 records. Address field may optionally contain
the two-byte address of the instruction to which control is to be passed. If not
specified, the first interplant specification encountered in the input will be used.
There is no code/data field.

Only one termination record is used for each block of S-records. Normally, only one header
record is used, athough it is possible for multiple header records to occur.

A4 SRECORD CREATION

S-record format programs may be produced by dump utilities, debuggers, cross assemblers, or
cross linkers. Several programs are available for downloading afile in the S-record format from a
host system to an 8- or 16-bit microprocessor-based system.

A5 SRECORD EXAMPLE

A typical S-record format, as printed or displayed, is shown in this example:

Example
S00600004844521B

S1130000285F245F2212226A00042429008237C2A
S11300100002000800082529001853812341001813
S113002041E900084#42234300182342000824A952
S107003000144ED492

S9030000FC

M68ICS05POM/D A-3

S-RECORD INFORMATION @ MOTOROLA

In the example, the format consists of:
* an SO header
» four S1 code/data records
* an SO termination record

A51 TheS0Header Record

The SO header record is described in Table A-4.

Table A-4. SO Header Record

S-Record
Field Entry Description

Type SO S-record type SO, indicating a header record
Record 06 Hexadecimal 06 (decimal 6), indicating six character pairs (or ASCII
Length bytes) follow
Address 0000 Four-character two-byte address field, zeroes
Code/Data 48 Descriptive information identified the following S1 records:

44 ASCII H, D, and R — “HDR”

52
Checksum 18 Checksum of SO record

A-4 M68ICS05POM/D

@ MOTOROLA S-RECORD INFORMATION

A52 TheFirst S1 Record

Thefirst S1 record is described in Table A-5.

Table A-5. S1 Header Record

S-Record
Field Entry Description
Type S1 S-record type S1, indicating a code/data record to be
loaded/verified at a two-byte address
Record 13 Hexadecimal 13 (decimal 19), indicating 19 character pairs,
Length representing 19 bytes of binary data, follow.
Address 0000 Four-character two-byte address field; hexadecimal address 0000,
indicates location where the following data is to be loaded.
Code/Data Opcode Instruction
28 5F BHCC @ $f0161
24 5F BCC $0163
22 12 BHI $0118
22 6A BHI $0172
00 04 2 BRSE 0, $04, $012F
29 00 4 T $010D
08 23 BHCS 4, $23, $018C
7 < BRSE
T
Checksum 2A Checksum of the first S1 record

The 16 character pairs shown in the code/data field of Table A-5 are the ASCII bytes of the
actual program.

The second and third S1 code/data records each also contain $13 (19) character pairs and are
ended with checksum 13 and 52, respectively. The fourth S code/data record contains 07
character pairs and has a checksum of 92.

M68ICS05POM/D A-5

S-RECORD INFORMATION @ MOTOROLA

A53 TheS9 Termination Record

The S9 termination record is described in Table A-6.

Table A-6. S-9 Header Record

S-Record

Field Entry Description
Type S9 S-record type S9, indicating a termination record
Record 03 Hexadecimal 04, indicating three character pairs (three bytes)
Length follow
Address 0000 Four-character two-byte address field, zeroes
Code/Data There is no code/data in a S9 record
Checksum | FC Checksum of S9 record

A54 ASCIll Characters
Each printable ASCII character in an S-record is encoded in binary. Table A-6 gives an example

of encoding for the S1 record. The binary data is transmitted during a download of an S-record
from a host system to an 9- or 16-bit microprocessor-based system.

A-6 M68ICS05POM/D

@ MOTOROLA SUPPORT INFORMATION

APPENDIX B
SUPPORT INFORMATION

B.1 OVERVIEW
This appendix provides technical support information for the M68ICSO5P In-Circuit Simulator
Kit, including:
* Functional description of the kit
— Emulation
— Programming
* Troubleshooting the Quick Start
» Troubleshooting the Programmer
* PartsList

B.2 FUNCTIONAL DESCRIPTION OF THE KIT

The M68ICS05P pod consists of two components:
* Pemulator
» 705P Programmer (including Vpp generation)

B.21 TheEmulator

The core of the emulation component of the pod U4 is the MC68HC705C8 device. This MCU
provides the required input/output information that lets the host computer simulate code,
performing al functions except for maintaining port values. The internal EPROM in the C8
device runs a program which generates the appropriate port values.

The ICSO5PW software on the host computer lets the host computer become a simulator. When
the ICS requires port data, the computer requests the data through the host’s serial connection to
the C8 device. The C8 responds by sending the data to the host viathe serial connection. It isthis
arrangement that lets the ICS simulator interface with the real world.

M68ICS05POM/D B-1

SUPPORT INFORMATION @ MOTOROLA

The M68ICS05P pod's 7.37-MHz crystal provides a clock signal for the C8 device. The clock
runs the device at a 3.68-MHz bus rate. Note that the simulation speed will be less than the bus
rate, because the host computer is the simulator.

NOTE

The C8 device differs from the P device in that it does not have
programmable pull-ups. Accordingly, the M68ICSO5P pod has
external pull-up resistors, which you can select using jumper
headers J4 through J13. To disable the pull-ups, remove the
fabricated jumpers from the corresponding headers.

B.22 Programming

In addition to controlling the input and output port signals, the C8 MCU also controls the
programming of the P devices.
NOTE

To program a 705P device, the EPROM of the device must first be
erased.

Programming begins with the initialization sequence:
* The host computer sends signals to the C8 device to initiate the programming
sequence, then releases the RESET line.
* Thehost computer then sends data to the 705P device through the C8.

» The 705P device self-programs its EPROM array using the data downloaded by the
host computer.

* The pod’'s MC34063 (U3) device generates the programming voltage (16.5 volts),
controlled at the programming socket by the switch S1 (the Programmer software
prompts you to turn switch S1 on or off as appropriate). In the case of the 705P, this
programming voltage is used only to put the P device in the programming mode. The
P device contains an internal charge pump that suppliesinternal Vee.

B.3 TROUBLESHOOTING THE QUICK START
If you should experience difficulties quick-starting your kit using the procedure outlined in
paragraph 1.7, follow these steps:

1. If the 705C8 part (at board location U4) is a windowed device, make certain that a
black opaque label covers the window.

2. Make sure that no hardware security key or other devices are attached to the seria
port.

B-2 M68ICS05POM/D

@ MOTOROLA SUPPORT INFORMATION

3.

4.

6.

Make sure that the seria cable is correctly attached to the pod, and to the correct
serial port on the host computer.

Check the power supply: first make sure that the pod is not connected to the power
supply, then measure the power to confirm that it produces 5 volts. Make sure the
power connector is securely attached. Y ou can measure this voltage with a voltmeter's
ground connection to the tab of U1 (7805), and the U1’s output pin (the pin located
the closest to R1). This voltage should measure +.5V (5%).

With the pod still disconnected, measure the voltage at connector U1; if it is less than
5volts:

a. Verify that your power supply is properly plugged into an active wall socket.

b. Verify that the power supply is not being current limited, but providing 9 volts
to the board. You can measure the voltage at the opposite pin of U1 (located
closest to the edge of the board).

c. Remove the C8 part. If the voltage at U1 climbs to 5 volts, the C8 may be
defective. Remove the U5 part.

d. If the voltage is till below 5 volts with both the U4 and U5 removed, the
board may be defective.

e. Cal Motorola Board Repair (800-451-3464) to arrange for replacement.

NOTE

To replace the C8 or P9 part, you must use a programmed
replacement part. It is not sufficient to substitute any C8 part. If a
programmed replacement is not available, you may be able to
program a replacement part yourself by downloading the file
ICSO5P.ZIP from Motorolas freeware bulletin board (512-891-
3733).

If you measure 5 volts at U1l when the C8 part is installed, measure the voltage
between Vpp (pin 3) and Vss (pin 20) of the C8 part at U4. If the level is not also 5
volts, check for a bent pin or other structural problem with the socket or the board
trace. If you can find no structural problem, call Motorola Board Repair to arrange for
a board replacement.

If there are 5 volts between pins 3 and 20, use an oscilloscope to check the output of
pin 39 of the device at U4. Set the oscilloscope to 0.5 (sec per division. You should
observe approximately 3.5 cycles per division; this correspondsto a 7.36 MHz signal.
If you do not get thisresult, it may be due to any of these problems:

a. Badcrystal at location Y1
b. Bad resistor at location R21
c. Bad capacitor at location C19 or C20

M68ICS05POM/D B-3

SUPPORT INFORMATION @ MOTOROLA

d. Bad C8 part at location U4
e. Bad socket at location U4
f. Broken trace on pod

g. Cold solder joint on pod

8. If, after checking the board parts, you still have not found the problem, measure the
signals on the clock and serial input pins (2, 3) of connector P2. There should be
activity on these pins when you enter the POD command. If there is no activity on
these pins, check for the following faults:

a. Bad C8 part at location U4
b. Bad socket at location U4

c. Bad connector at location J2
d. Broken trace on pod

e. Cold solder joint on pod

9. If the problem persists, check LED at D1: remove the C8 device, then short socket pin
4 to ground. If the LED does not light, it may be defective or installed backwards.

10. If during the quick-start, the LED at D1 still does not flash, consult a field application
engineer from your Motorola distributor or sales office.

11. If during the quick-start, the LED at D1 continues to flash, check that U4 pin 11 goes
high when you push switch S3. If it does not go high, ohm out resistor R13 and switch
S2. Consult Motorola Board Repair if needed.

B4 TROUBLESHOOTING THE PROGRAMMER
If you should experience difficulties when programming a 705P part with which you can perform
other simulator functions, follow these steps:
1. Test the socket XU1/XU2:
a. Verify that no part isin socket XU1/XUZ2.

b. Verify that the voltage on pin 28 of the socket is 5 volts. If not, the socket may
be bad or there may be a bad pod trace. If you such either, refer to
Troubleshooting the Quick Start (above).

2. Cdibrate Vpp: If pin 13 has 5 volts, calibrate the Vpp using these steps:
a Turnswitch S2 ON.
b. Measure the signal on pin 2 of socket U2.
c. Adjust potentiometer VR1 until your meter reads 16.5 volts.
d. Turn switch S2 to OFF and disconnect Vpp power

B-4 M68ICS05POM/D

@ MOTOROLA SUPPORT INFORMATION

3. Retest programmer:

a. In the ICS, enter the PROGRAM command and follow the programming
instructions that appear on the screen.

b. Before reinserting the 705P device in socket XU1/XU2, make sure that its
erase window is covered.

c. Choose the BLANK CHECK programming option. There should be no
activity on pin 16 of socket U2.

Use the oscilloscope to measure Vep as the 705P device is being programmed; the V pp should not
drop below 16 volts. If the Vpp drops below 16 volts, either or both the 705P device or the
MC34063 device may be defective.

To replace defective parts, call Motorola Board Repair (800-451-3464).

B.5 SCHEMATIC DIAGRAM AND PARTSLIST

Figure B-1 diagrams the M68ICS05P logic components. Table B-1 itemizes and describes the
M68ICS05P parts list.

M68ICS05POM/D B-5

@ MOTOROLA

SUPPORT INFORMATION

8 I I I

A T o] ZE61 60 Baueq emsen,

MS560635VED Fl

450801
onyj

®

11001 ININGO13NITTSO0 MO

xL

o

ATIVANVIN 3SIAZE LON OQ - ONIMYYA d31Vd3INIO d31NdINOD

Hos Zdsol
il

ST 1714 4988 QVOHO

1o

vOBEN LSOH OL ¢€e-sd

HOLVHINIO ddA T°
0 O

O

oo e >

o .

0

o o

+1 one FVANOD O

©
1INa ms 3SN3S L]

¢ &)
s
ddA inor e o
al i)
108)
o
N Yl 20A
|
Ao LS N0 hd SMOT104 SY NMOHS 34V S21vO 40 HOLYNDISIDY.
8
oon F on "
FONIYIIIY ANV 'SHITWNN Nid ‘IdAL 30IA30 €
n d3IMOd LNdNI
3iva NOILdI¥OS3d UEL] dS0SDI89N

8 I z I

Figure B-1. M68I CSO5P Schematic Diagram

(Sheet 1 of 2)

M68ICS05POM/D

B-6

B-7

SUPPORT INFORMATION

z I I s T T) 2 T T I 7 I 5
A R AT
. S13IXO0S ONINNVYHEOOdd
o)
o
asuson 2
o
@ R o ==
S1001 ININHOTIAIA ISOTMOT] zo *
o s weniod |z
m,' MosiLad =
m,' |as/98d —
i ooseac =
T ovd -
wa
o
evd o
e
sva
ova
]
o] AA— son
35
v wz
> Vo o
- I o ==
2 = 50+
o = NO
I] #
= L 71 8SA HENZOd 3
[~ ok HOS/L8d e
7 K o 2] asosd E
[z 2] oassed
[e= ova
Lee 1] [T o dz Qo
@y
- ova a0
adA. — ©vd A
=] m [
i X — svd
son =N = o avouics [
7 o0 o (B 2050 () nos
k3 —{ danoul 1080 02y
@) —] Gasa wn [
o A0k o
e o paunseifos 1
aNe = on 208 az
54
98d 2m AL 90
sea 2 oM g om o
ved e m TenakoLms
sosomas red
a1 anve cod I e s e B e e —0 O— o—
1gd [0 wiNyg o "
oed 1
ova
et 5 FIavNa a3 o
ol of of of of of «f of « 0 O — A v
ovd |2 z E e IN
Vakal v & M o za
2on 1 of o o o o of of o i
sva L
e e avd 9 00A 200
o © — wxd 000000 u
adn EIM | SSA HYNLOd Lod "ok
: ou 000000 1] Sosusd o0
] o ey - z Jivve
4 N N - N 1 INVIPOd
" I [ENV/EOd
o w4
© HnzE L ok 1od Qe
A a 00d
\© S0d
H 01 anoL
sy avouaa =
29/ 2on 2080 =
= anez o | oso [
o can
7T = : _ :
T T o
1 I T
13528 awvoa
21
\ad BrioNL %001 0. ¥3Aav3H NOILYINING
9y B 224 w
21 21
T T T T E | 5 T i T B I < I 3

@ MOTOROLA

Figure B-2. M 68l CSO5P Schematic Diagram
(Sheet 2 of 2)

M68ICS05POM/D

SUPPORT INFORMATION

@ MOTOROLA

Table B-1. M68I CSO5P Parts List

Q
<

Reference

Part

C1, C7, C10, C13, C17

0.1pF capacitor

C2,C5,C8

47uF capacitor

C3, C4, C15, C21, C22

1pF capacitor

C6, C9, C12, C23 10pF capacitor
Cl1 100pF capacitor
Cle6, C18 27pF capacitor
Cl14 22pF capacitor

CR1, CR2, CR4, CR5

1N4148 diodes

CR3

1N5817 diode

5

3

5

4

1

2

1

4

1

1 D1, D2 LED (red)

1 L1 Inductor 180 pH

1 L2 Inductor 10 pH

1 P1 2.1mm MALE SOCKET connector
1 P2 DB-9F connector

2 Q1, Q2 2N3904 transistor

1 Q3 2N3906 transistor

1 R1 .68 ohm resistor, 5%, 1 watt
3 R2, R23, R24 2.2k resistor

5 R4, R15, R17, R18, R19 10k resistor

3 R5, R7, R14 3.3k resistor

2 R3, R16 100 resistor

1 R8 15k resistor

1 R9 1.3k resistor

2 R10, R13 470 resistor

2 R11, R22 100k resistor

1 RN1 100k 10-pin SIP (1 Common)

M68ICS05POM/D

@ MOTOROLA

SUPPORT INFORMATION

TableB-1. M68I CS05P PartsList (continued)

Qty Reference Part

1 R12 1k resistor

2 R20, R21 10M resistor

1 R16 22k resistor

2 S1, S2 SW DPDT switch

2 S3, S4 SPST switch

1 XU6 50K programming socket (not populated)

1 XU7 28-pin DIP programming socket

2 XUS8, v5 socket 28-pin socket

1 U4 MC68HC705CB8A (pre-programmed) Integrated
Circuit

1 XU4 socket 40-pin socket

1 VR2 10k potentiometer

12 W2, W3, W4, W5, PAO — PA7 | 2-pin Berg strip header

1 w1 3-pin Berg strip header

1 Y1l 4.0 MHz crystal

1 Y2 7.3728 MHz crystal

4 rubber feet

13 jumper shunts

M68ICS05POM/D

SUPPORT INFORMATION @ MOTOROLA

B-10 M68ICS05POM/D

@ MOTOROLA GLOSSARY

GLOSSARY

8-bit MCU A microcontroller whose data is communicated over a data bus
made up of eight separate data conductors. Members of the
M68HCO5 family of microcontrollers are 8-bit MCUSs.

A Abbreviation for the accumulator of the M68HC05 MCU.

accumul ator An 8-bit register of the M68HC05 CPU. The contents of this
register may be used as an operand of an arithmetic or logical
instruction.

assembler Software program that translates source code mnemonics into

opcodes that can then be loaded into the memory of a
microcontroller.

assembly language Instruction mnemonics and assembler directives that are
meaningful to programmers and can be trandlated into an object
code program that a microcontroller understands. The CPU uses
opcodes and binary numbers to specify the operations that make up
a computer program. Humans use assembly language mnemonics
to represent instructions. Assembler directives provide additional
information such as the starting memory location for a program.
Labels are used to indicate an address or binary value.

ASCII American Standard Code for Information Interchange. A widely
accepted correlation between alphabetic and numeric characters
and specific 7-bit binary numbers.

breakpoint During debugging of aprogram, it is useful to run instructions until
the CPU gets to a specific place in the program, and then enter a
debugger program. A breakpoint is established at the desired
address by temporarily substituting a software interrupt (SWI1)
instruction for the instruction at that address. In response to the
SWI, control is passed to a debugging program.

byte A set of exactly eight binary bits.

C Abbreviation for “carry/borrow” in the condition codes register of
the M68HCO05. When adding two unsigned 8-bit numbers, the C bit
is set if the result is greater than 255 ($FF).

M68ICS05POM/D Glossary-1

GLOSSARY

@ MOTOROLA

CCR

clock

command set

condition codes register

CPU

CPU cycles

CPU reqisters

cycles

data bus

Glossary-2

Abbreviation for “condition codes register” in the M68HCO05. The
CCR has five bits (H, I, N, Z, and C) that can be used to control
conditional branch instructions. The values of the bits in the CCR
are determined by the results of previous operations. For example,
after a load accumulator (LDA) instruction, Z will be set if the
loaded value was $00.

A square wave signal that is used to sequence events in a
computer.

The command set of a CPU is the set of all operations that the CPU
knows how to perform. One way to represent an instruction set is
with a set of shorthand mnemonics such as LDA meaning “load
A.” Another representation of an instruction set is the set of
opcodes that are recognized by the CPU.

The CCR have five bits (H, I, N, Z, and C) that can be used to
control conditional branch commands. The values of the bits in the
CCR are determined by the results of previous operations. For
example, after a load accumulator (LDA) instruction, Z will be set
if the loaded value was $00.

Central Processor Unit. The part of a computer that controls
execution of instructions.

A CPU clock cycle is one period of the internal bus-rate clock.
Normally this clock is derived by dividing a crystal oscillator
source by two or more so the high and low times will be equal. The
length of time required to execute an instruction is measured in
CPU clock cycles.

Memory locations that are wired directly into the CPU logic
instead of being part of the addressable memory map. The CPU
always has direct access to the information in these registers. The
CPU registers in an M68HCO5 are A (8-bit accumulator), X (8-bit
index register), CCR (condition codes register containing the H, I,
N, Z, and C bits), SP (stack pointer), and PC (program counter).

See CPU cycles

A set of conductors that are used to convey binary information
from a CPU to a memory location or from a memory location to a
CPU; in the M68HCO5, the data bus is 8-bits.

M68ICS05POM/D

@ MOTOROLA

GLOSSARY

development tools

EPROM

index register

input-output (1/0O)

instructions

listing

MCU

M68ICS05POM/D

Software or hardware devices used to develop computer programs
and application hardware. Examples of software development tools
include text editors, assemblers, debug monitors, and simulators.
Examples of habrdware development tools include simulators,
logic analyzers, and PROM programmers. An in-circuit simulator
combines a software simulator with various hardware interfaces.

Erasable, Programmable Read-Only Memory. A non-volatile type

of memory that can be erased by exposure to an ultra-violet light
source. MCUs that have EPROM are easily recognized by their
packaging: a quartz window allows exposure to UV light. If an
EPROM MCU is packaged in an opaque plastic package, it is
termed a “one-time-programmable” OTP MCU, since there is no
way to erase and rewrite the EPROM.

Abbreviation for “half-carry” in the condition codes register of the
M68HCO5. This bit indicates a carry from the low-order four bits
of an 8-bit value to the high-order four bits. This status indicator is
used during BCD calculations.

Abbreviation for “interrupt mask bit” in the condition codes
register of the M68HCO05.

An 8-bit CPU register in the M68HCO05 that is used in indexed
addressing mode. The index register (X) can also be used as a
general purpose 8-bit register (in addition to the 8-bit accumulator).

Interfaces between a computer system and the external world: for

example, a CPU reads an input to sense the level of an external
signal and writes to an output to change the level on an external
signal.

Instructions are operations that a CPU can perform. Instructions are

expressed by programmers as assembly language mnemonics. A
CPU interprets an opcode and its associated operand(s) as an
instruction.

A program listing shows the binary numbers that the CPU needs

alongside the assembly language statements that the programmer
wrote. The listing is generated by an assembler in the process of
translating assembly language source statements into the binary
information that the CPU needs.

Microcontroller: a complete computer system including CPU,
memory, clock oscillator, and I/O on a single integrated circuit.

Glossary-3

GLOSSARY

@ MOTOROLA

memory location

object code file

operand

opcode

OTPROM

PC

program counter

RAM

Glossary-4

In the M68HCO5, each memory location holds one byte of data and
has a unique address. To store information into a memory location
the CPU places the address of the location on the address bus, the
data information on the data bus, and asserts the write signal. To
read information from a memory location the CPU places the
address of the location on the address bus and asserts the read
signal. In response to the read signal, the selected memory location
places its data onto the data bus.

Abbreviation for “negative,” a bit in the condition codes register of
the M68HCO05. In twos-complement computer notation, positive
signed numbers have a zero in their MSB and a negative numbers
have a one in their MSB. The N condition code bit reflects the sign
of the result of an operation. After a load accumulator instruction,
the N bit will be set if the MSB of the loaded value was a one.

A text file containing numbers that represent the binary opcodes
and data of a computer program. An object code file can be used to
load binary information into a computer system. Motorola uses the
S-record file format for object code files.

An input value to a logical or mathematical operation.

A binary code that instructs the CPU to do a specific operation in a
specific way. The M68HC05 CPU recognizes 210 unique 8-bit
opcodes that represent addressing mode variations of 62 basic
instructions.

A non-volatile type of memory that can be programmed but cannot
be erased. An OTPROM is an EPROM MCU that is packaged in
an opaque plastic package, it is called a “one-time-programmable”
MCU because there is no way to expose the EPROM to a UV light.

Abbreviation for program counter CPU register of the M68HCO05.

The CPU register that holds the address of the next instruction or
operand that the CPU will use.

Random Access Memory. Any RAM location can be read or
written by the CPU. The contents of a RAM memory location
remain valid until the CPU writes a different value or until power
is turned off.

M68ICS05POM/D

@ MOTOROLA

GLOSSARY

registers Memory locations that are wired directly into the CPU logic
instead of being part of the addressable memory map. The CPU
always has direct access to the information in these registers. The
CPU registers in the M68HCO5 are A (8-bit accumulator), X (8-bit
index register), CCR (condition codes register containing the H, 1,
N, Z, and C hits), SP (stack pointer), and PC (program counter).
Memory locations that hold status and control information for on-
chip peripherals are called I/O and control registers.

reset Reset is used to force a computer system to a known starting point
and to force on-chip peripherals to known starting conditions.

S-record A Motorola standard format used for object code files.

simulator A computer program that copies the behavior of areal MCU.

source code See source program

SP Abbreviation for stack pointer CPU register in the M68HCO05
MCU.

source program A text file containing instruction mnemonics, labels, comments,
and assembler directives. The source file is processed by an
assembler to produce a composite listing and an object file
representation of the program.

stack pointer A CPU register that holds the address of the next available storage
location on the stack.

Vb The positive power supply to a microcontroller (typically 5 volts
dc).

Vss The 0 volt dc power supply return for a microcontroller.

Word A group of binary bits. Some larger computers consider a set of 16
bits to be awork but thisis not a universal standard.

X Abbreviation for “index register,” a CPU register in the M68HCO5.

Z Abbreviation for “zero,” a bit in the condition codes register of the

M68HCO05. A compare instruction subtracts the contents of the
tested value from a register. If the values were equal, the result of
this subtraction would be zero so the Z bit would be set; after a
load accumulator instruction, the Z bit will be set if the loaded
value was $00.

M68ICS05POM/D Glossary-5

GLOSSARY @ MOTOROLA

Glossary-6 M68ICS05POM/D

@ MOTOROLA

INDEX

%
%FILEYb, 4-6, 4-21, 4-26, 4-28, 8-2

ASM files, 3-2

A command, 7-10
ACC command, 7-10
Accumulator value, 6-21
adding

breakpoints, 6-20

variables, 6-10
address, 5-13

fieldsin listing file, 6-4
Also save all open editor files, 4-20
ASCII

characters, A-6

constants, 5-7

files, 3-2

format, 6-12
ASCII files, 6-4
Ask user " Exit Application, 4-20
ASM command, 7-11
Assemble/Compile, 1-6
Assemble/Compile file button, 5-1
assembler, 1-1, 1-2, 3-2

comments, 5-8

constants, 5-7

error messages, 5-17

files, 3-3

listing directives, 5-12

listing files

fields, 5-13

operands, 5-7

third party, 5-6
assembler directives, 5-8
Assembler InterfacE, 5-1
assembler options, 4-17
Assembler Outputs, 5-5
Assembler Parameters, 5-4
assembler progress window, 4-25
Assembler/Compiler options, 1-5
Assembler/Compiler Tab, 4-23
assemblers

third party, 5-19
assembly

conditional, 5-10

M68ICS05POM/D

INDEX

assembly files, 3-2

Assembly Preferences, 4-25

Auto-| ndentation, 4-22

Auto-Save All Files, 4-20
Auto-Save the Current Project, 4-20

B
Back to Editor toolbar button, 4-4
base address
setting, 6-9
batch file

error output, 4-27
BATchfiles, 4-24
BELL command, 7-12, 7-13
BF command, 7-13
BR command, 7-14
branching, 5-13
breakpoing

editing, 6-21
breakpoint

deleting, 6-21

setting, 6-8
Breakpoint Window, 6-20
breakpoints, 1-2

adding, 6-20

removing, 6-21
BREAKSP command, 7-18
BREAKX command, 7-20
Browse, 3-2
busrate, B-2
bytes, 4-3

C command, 7-22

C8 device, B-1

calculating
speed of assembled code, 6-2

CAPTURE command, 7-23

CAPTUREFILE command, 7-24

CASM, 3-3

CASM Assembler Parameters, 5-4

CASMO5W, ii, 1-1, 1-3, 1-5, 1-6, 3-1, 3-2, 5-1,5-2, 5-3, 5-
4,5-5,5-6, 5-8, 5-10, 5-11, 5-15, 5-17, 5-19, 6-1, 6-3,
81,8284
window, 1-6, 8-4

CCvalue, 5-13

CCR command, 7-25

CF command, 7-24

changes
restoring, 4-15

Index-1

INDEX @ MOTOROLA
reverses, 4-14 connecting
saving, 4-13 power supply, 1-4

changing context-sensitive Help, 1-2

CPU information, 6-15

save options, 4-20

software startup, 6-5
changing bases, 6-11
checksum, A-1
child windows, 4-2
chip logic

representing, 6-17
Chip Window, 6-17
CHIPINFO, 1-2
choosing

variable types, 6-11
Clear All, 6-11
clearing

markers, 4-5

variables, 6-11
CLEARMAP command, 7-27

CLEARSYMBOL command, 7-28

client windows

WinlIDE, 4-2
clock signal, B-2
closing

current project file, 4-19
closing files

WinIDE, 4-13
code timing, 6-18
Code Window, 7-87

Shortcut menu functions, 6-8
Code Window Shortcut menu, 6-8
code windows, 6-7
code/data, A-1
Codel window, 6-7
Code2 window, 6-7
Color, 4-30
column numbers, 4-3
command

sequences, 1-2
command buffer, 6-24
command line, 6-13
Command Line Parameters, 4-6
command syntax, 7-2
comments, 5-8
communication

ICS, 3-3
communications, 1-2
Compact, 3-3
compiler options, 4-17
compiler types, 4-24
compilers, 3-2

third party, 6-3
components

ICS05PW, 1-1
conditional assembly, 5-10

configuring external programs in WinIDE, 4-23

Confirm command line, 4-26

Confirm Command line before running, 4-29

Index-2

copying text, 4-16
Count:, 6-21
counting

cycles, 6-18
CPU registers, 6-15
CPU results, 6-18
CPU Window, 6-15
Create Backup, 4-22
creating

new file

WinIDE, 4-11

script files, 6-4

sourcefiles, 4-14
cross-assembler, 1-1
Currently edited filename, 4-21
customizing environments, 1-5
Cycle Adder, 5-8
CycleCntr, 5-13
cycle counter, 5-13

cycleinformation, including in list file, 4-25

cycles

fieldinlisting file, 6-4
CYCLES command, 7-30
Cycles Window, 6-18

DASM command, 7-31
DDRA command, 7-32
DDRB command, 7-33
debugger options, 4-17
debugger routines, 6-32
debuggers, 3-2, 4-23
debugging commands, 6-24
Delete Variable, 6-11
deleting
breakpoint, 6-21
variables, 6-11
deleting text, 4-16
desktop information, 4-17
DIP, 1-1
direct addressing mod, 5-16
Direction, 4-31
displaying

Code Window Shortcut menu, 6-8

sour ce code, 6-7
Stack Window:, 6-18
Trace Window, 6-19
Variables Shortcut menu, 6-10
distribution media, 3-2
download files, 6-22
drive space, 1-2
DUMP command, 7-34

M68ICS05POM/D

@ MOTOROLA INDEX
E running, 4-23
external pull-down resistors, B-2
edit options
WinIDE, 4-14 F
editing
breakpoints, 6-21 FCB directive, 5-16
sourcefiles, 4-14 FDB directive, 5-16
text, 3-1 fields
editing options, 4-22 listing files, 6-4
editor, 1-2 file options
EEPROM, 1-1 WinIDE, 4-11
Effects, 4-30 File options
emulator, B-1 ICS, 6-27
entering filename
debugging commands, 6-24 storing as parameter, 4-20
environment filename parameter, 4-6
building, 4-3 files
customizing, 1-5 ASCII, 3-2
Environment menu, 1-4 assembler, 3-3
Environment Menu assembly, 3-2
WinIDE, 4-17 ICS, 3-3
environment settings, 4-16, 4-17 ICS05PW, 3-3
storing, 4-16 listing, 8-4
Environment Settings Dialog, 1-4 map, 3-2
EPROM, 1-2 object code, 3-2
EQU, 5-15 printing, 4-13
equate directive, 5-15 programmer download, 6-22
Error Filename, 4-27 programmer upload, 6-22
Error Files, 6-3 S19, 3-2, 6-3
Error Format, 4-27 saving, 4-12, 4-13
error messages startup, 6-6
assembler, 5-17 WinIDE, 3-3
error output batch file, 4-27 filetypes
EVAL command, 7-35 WinIDE, 4-4
example Find Dialog
listing table, 5-14 WinIDE, 4-31
macro directive, 5-11 Find Next button, 4-31
examples Find what textbox, 4-32
changing number format, 6-11 Fixed Tabs, 4-23
conditional assembly directives, 5-10 Font, 4-29
labels, 5-14 font settings, 4-16
S-records, A-3 Font Style, 4-29
EXE 1 (Debugger) tab, 4-28 Form Constant Byte, 5-16
EXE 2 (Programmer) tab, 4-28 Form Double Byte, 5-16
EXE Path, 4-24, 4-28
executable options, 4-17 G
executing
source code, 6-8 G command, 7-37
EXIT command, 7-36 Generd Editor, 1-5
exiting General Editor options, 4-17
WInIDE, 4-11, 4-14 General Editor Tab, 4-22
Expand Includesin List, 4-25 General Environment, 1-5
Expand Macrosin Listing, 4-25 General Environment options, 4-17
extended addressing mode, 5-16 General Environment Tab, 4-20
extension General Options. . ., 4-22
specifying, 4-6 Give user option to save each file, 4-21
External Program 1 toolbar button, 4-4 GO command, 7-37
external programs, 4-28 GOMACRO command, 7-38
configuring in WinIDE, 4-23 Gotil Addressat Cursor, 6-8
M68ICS05POM/D Index-3

INDEX

@ MOTOROLA

GOTIL command, 7-39
GOTOCY CLE command, 7-40

H

H command, 7-41
hardware
installation, 2-1
requirements, 1-2
hardware specifications, 1-3
Help, 1-2
HELP command, 7-42
HEX format, 6-12
hexadecimal number format, 6-11
hexadecimal values
fieldinlisting file, 6-4
humidity, 1-3

| command, 7-43
1/0, 1-1
1/0 pins, 6-17
ICS, 6-1
Execute Menu, 6-32
Execute Options, 6-32
File Menu, 6-27
File options, 6-27
files, 3-3
menu options
Close Logfile, 6-31
Exit, 6-31
Go, 6-33
Load S19 File, 6-28
Multiple Step, 6-33
Open Logfile, 6-30
Open Window, 6-34
Play Macro, 6-29
Record Macro, 6-29
Reload Desktop, 6-35
Reload Last S19, 6-28
Reset Processors, 6-32
Save Desktop, 6-35
Stop, 6-33
Stop Macro, 6-30
starting, 6-5
Window Options, 6-34
windows
Breakpoint Window, 6-20
Chip Window, 6-17
Code Windows, 6-7
CPU Window, 6-15
CPU Wndow, 6-15
Cycles Window, 6-18
Memory, 6-12
Memory Window, 6-12
Personality EEPROM Window, 6-19
Programmer Window, 6-22
Stack Window, 6-18

Index-4

Status Window, 6-13
Trace Window, 6-19
Variables Window, 6-10
Wndows
Variables Window, 6-10
|CS05PW, 3-2
ICS05PW, 1-1, 1-2, 1-4, 1-5
Components, 1-1
features, 1-2
|CS05PW command argument types, 7-3
|CS05PW command overview, 7-4, 7-5, 7-6, 7-7, 7-8, 7-9
|CS05PW command set, 7-1
ICS05PW COMMAND SYNTAX, 7-2
|CSO5PW commands, 6-13
|CSO5PW simulation speed, 6-1
If Modified filesexist just prior to external program
execution:, 4-21
In-circuit simulator
user interface, 6-1
In-Circuit Simulator, 1-1
INCLUDE, 8-3
INCLUDE directive, 5-10
included files, 4-21
included files, expanding, 4-25
indentation, 4-22
INFO command, 7-44
initialization sequence, B-2
INPUTA command, 7-45
INPUTB command, 7-46
INPUTS command, 7-47
installation
compact, 3-3
typical, 3-3
installing
|CSO5PW software, 3-2
M68HC705J1A pod, 2-1
M68ICS05P pod, 2-1
software, 3-1, 3-2
INT command, 7-48
integrated development environment, 1-1
internal charge pump, B-2
internal registers, 6-15
Interrupt Stack, 6-18
IRQ command, 7-48

jumper headers, B-2

L

labels, 5-11, 5-13, 5-14, 6-10
LF command, 6-5
line count, 5-13
fieldinlist file, 6-4
line numbers, 4-3
lines
total, 4-3
listing directives, 5-12

M68ICS05POM/D

@ MOTOROLA INDEX
listing files, 4-4, 4-25, 5-12, 8-4 clearing, 4-5
fields, 5-13 moving, 4-5, 4-6
Listing Files, 5-6, 6-4 setting, 4-5
Listing Options, 4-25 using, 4-5
listing table, 5-13 Match Casg, 4-31, 4-32
LISTOFF command, 7-49 Match Whole Word Only, 4-31, 4-32
LISTON command, 7-50 MC68HC705C8 device, B-1
LOAD command, 7-51 MCUs, 1-1
Load S19 File, 6-28 MD command, 7-58
LOADDESK command, 7-52 media, 3-2
loading memory, 1-2
map files, 6-28 modifying, 6-12
LOADMAP command, 7-53 viewing, 6-12
log files memory address, 5-13, A-1
opening, 6-30 memory map information, 6-12
specifying, 6-30 Memory Window, 6-12
Log Files, 6-5 Shortcut menu, 6-12
LOGFILE command, 6-5 memory-maps, 1-2
menu options
M WinIDE, 4-9, 4-10, 6-26, 6-27
menus
M68HCO05 MCUs, 6-19 WinIDE, 4-9
M68HC705P, 1-1, 1-2 microcontrollers, 1-1
M68HC705P6, 1-1, 1-2 MM command, 6-12, 7-59
M68HC705P9, 1-1 modifying
M68ICS05P, i, 1-1, 1-2, 1-3, 1-4, 2-1, 4-1, 4-3, 6-1, 6-22, memory, 6-12
7-67,B-1, B-2, B-5, B-6, B-7, B-8, B-9 memory bytes, 6-12
features, 1-2 Motorola Board Repair, B-5
M68ICS05P In-Circuit Simulator Kit support information, moving
B-1 markers, 4-5, 4-6
M68ICS05P Parts List, B-8, B-9
M68ICS05P pod, 4-3 N
machine cycles, 5-13
MACRO command, 7-55 N command, 7-60
MACRO directive, 5-11 navigating
MACROEND command, 7-56 in sour files, 4-5
macros navigating in the IDE environment, 4-4
forward referencing, 5-12 No Trace Available, 6-20
jumping from, 5-12 NOBR command, 7-61
recording, 6-29 NOMAP command, 7-62
running, 6-29 non-P& E compiler, 4-24
stopping, 6-30 NOSYMBOL command, 7-62
macros,expanding, 4-25 number format, 6-11
MACROSTART command, 7-57 number of cycles
Main Filename, 4-21 counting, 6-18
Main Filename option
WinIDE, 4-26 O
managing
Code Window contents, 6-8 object files, 3-2
open windows, 4-33 Object Files, 5-5
variables, 6-10 opcode mnemonics, 5-6
managing files Open File dialog
WinIDE, 4-11 WinIDE, 4-12
managing project information, 4-16 Open Logfile, 6-30
map files, 3-2 Open Project, 1-4
loading, 6-28 opening
Map Files, 5-5 log files, 6-30
Marker Sub-menu, 4-6 opening files
markers WinIDE, 4-12
M68ICS05POM/D Index-5

INDEX

@ MOTOROLA

operating system, 1-2

operating temperature, 1-3
Options, 4-28

ORG, 5-16

originate directive, 5-16

Other Assembler/Compiler, 4-26
Output Debug File, 4-24

Output Listing File, 4-24

Output S19 Object, 4-24

P& E compiler, 4-24
P1,2-1
P2, 2-1

pod connector, 1-4
parameters

passing, 4-6

Parts List for M68ICS05P, B-8, B-9

pasting text, 4-16
PC command, 7-63
Pick Window, 6-22
PIF files, 4-24
pin-out, 1-2
pins, 6-17
Play Macro, 6-29
pod, 1-1, 1-2, 1-4, 6-17
communication, 3-3
installation, 2-1
POD command, 7-64
pod connector P2, 1-4
port
seria, 1-2
port data, B-1
PORTA command, 7-65
PORTB command, 7-66
power requirements, 1-3
power supply
connecting, 1-4
power-on switch, 2-1
PPF files, 4-17
printing
WinIDE, 4-11
printing files
WinIDE, 4-13
processor cycles
viewing number, 6-18

PROGO05P3 Programmer Pick Window, 6-22

program counter

setting, 6-8
Program Manager, 3-3
Programmer Files Window, 6-22

Programmer Status Window, 6-22

programmer troubleshooting, B-4
Programmer Window, 6-22
programmers, 4-23
programming, B-2

programming voltage, B-2
project

Index-6

sample, 8-1
project environment

building, 4-3

setting up, 4-16
project files, 4-17
Project Files, 6-2
project name, 4-17
projects

saving, 4-18
PRTA command, 7-65
PRTB command, 7-66
pseudo operations, 5-15

quick start, 1-4

Q

Quick Start troubleshooting, B-2

QUIT command, 7-36

R command, 7-70
RAM, 1-2

Real Tabs, 4-23
record length, A-1
Record Macro, 6-29
record type, A-1
recording macros, 6-29

R

Recover Error from Compiler, 4-26

Redo
WinIDE, 4-15
REG command, 7-71
registers, 1-2
Reload Last S19, 6-28
REM command, 7-72
removing
breskpoints, 6-21
Replace Diaog, 4-32
requirements
hardware, 1-2
host, 6-2
host computer, 1-2
software, 1-2

Reserve Memory Byte, 5-16

RESET command, 7-73
reset switch, 2-1

RESETGO command, 7-74

resetting

microcontroller, 6-32

reversing changes, 4-14
RMB directive, 5-16

RS-232 seria connector,

RTI, 6-18
RTS, 6-18
Run, 3-2
RUN command, 7-37
running
macros, 6-29

2-1

M68ICS05POM/D

@ MOTOROLA INDEX
S simulator, 1-2
simulators, 4-23
Srecords Size, 4-29
S1, A-5 SLD map files, 6-28
S0 header record, A-4 Smart Tabs, 4-23
address, A-4 software
checksum, A-4 installation, 3-2
code/data, A-4 loading, 3-1
record length, A-4 modifying startup, 6-5
type, A-4 requirements, 1-2
S1,2-1 starting, 3-3
S1 record, A-5 WinIDE, 1-1
S19files, 3-2, 6-3 Sound Bell on Error, 4-25
S3, 2-1 source code, 5-13
Sample, 4-30 assembly mode, 6-7
sample project, 8-1 disassembly mode, 6-7
Save all files before running, 4-29 editing, 3-1
Save files before Assembling, 4-25, 4-26 executing, 6-8
SAVEDESK command, 7-75 source codefiles, 4-4
saving sourcefiles
changing options, 4-20 creating, 4-14
files, 4-12, 4-13 editing, 4-14
projects, 4-18 preparing, 5-6
Saving the Project, 4-20 source window
scratch pad files, 6-5 WinIDE, 4-2
Script, 4-30 source-level debugging, 5-5
SCRIPT, 1-2 SP command, 7-81
Script Files, 6-4 specifications
Search Menu hardware, 1-3
WinIDE, 4-30 Soecify project file to save Dialog, 4-18
Select Source Module, 6-9 specifying
selecting text, 4-16 ASCII constants, 5-7
serial connector, 2-1 speed
serid port, 1-2, 1-4 calculating, 6-2
Set Base Address, 6-9, 6-12 simulation, 6-1
Set Base Addressto PC, 6-9 Split Bar, 4-36
Set PC at Cursor, 6-8 Split Pointer, 4-36
setting S-record
base address, 6-9 field contents, A-2
breakpoints, 6-8 types, A-2
markers, 4-5 S-records
program counter, 6-8 content, A-1
setup creating, A-3
|CS05PW software, 1-4 fields, A-1
Setup, 3-2 0, A-4
Setup Environment option, 1-4 9, A-6
Setup Fonts Dialog, 4-29 termination record, A-6
Show asHEX and ASCII, 6-12 SS command, 7-82
Show asHEX Only, 6-12 STACK command, 7-84
Show Assembler Progress, 4-25 stack data interpretations, 6-19
Show Cyclesin Listing, 4-25 stack pointer value, 6-18
Show Disassembly, 6-9 Stack Pointer value, 6-21
Show Sour ce/Disassembly, 6-9 stack values
SHOWBREAKS command, 6-20, 7-76 viewing, 6-18
SHOWCODE command, 7-77 Stack Window, 6-18
SHOWTRACE command, 6-19, 7-79 displaying, 6-18
simulation mode standalone mode, 6-5
ICS05PW, 4-3 Start Menu, 3-2, 3-3
simulation speed, 6-1 starting
M68ICS05POM/D Index-7

INDEX @ MOTOROLA
ICS, 6-5 Typical, 3-3
software, 3-3
WinIDE, 4-3 §]

starting ICSO5PW, 1-4

startup files, 6-6 U2, 6-22

STARTUP.05P, 6-6 Underline, 4-30

status bar Understanding Small Microcontrollers, 1-2
WinIDE, 4-3 Undo

Status Window, 6-13 WinIDE, 4-14
command-line area, 6-13 upload files, 6-22

message area, 6-13
STEP command, 7-83
STEPFOR command, 7-85
STEPTIL command, 7-86
Stop Macro, 6-30
storage temperature, 1-3
storing

desktop information, 4-17

environment settings, 4-16

executable options, 4-17
Strikeout, 4-30
Subroutine Stack, 6-19
switches

compiler/assembler, 4-26
SYMBOL command, 6-10, 7-87
symbol table, 5-14

list file, 6-4
system progress, 4-3
system requirements, 6-2
system status, 4-3

tab settings, 4-22
Tab Settings. . ., 4-23
Tab Size, 4-23
temperature, 1-3
text files, 4-4
timing code, 6-18
title bar

WinIDE, 4-2
Toggle Breakpoint at Cursor, 6-8
toolbar

WinIDE, 4-7, 6-24
total, 4-3
total number of bytes, 4-3
trace buffer, 6-19

slot numbers, 6-20
TRACE command, 6-19, 7-88
Trace Window, 6-19

displaying, 6-19
tracing

viewing, 6-19
transformer

connecting, 1-4

troubleshooting the programmer, B-4

troubleshooting the Quick Start, B-2
Type, 4-28
TYPE, 4-24

Index-8

UPLOAD_SREC command, 7-89
Upon Exiting WinIDE, 4-20
user interface
ICS, 6-1
WinIDE, 4-1
user manual, 1-2
using
included files, 4-21
using markers, 4-5

vaues on stack, 6-18
VAR command, 7-90
variable types
choosing, 6-11
variables
adding, 6-10
clearing, 6-11
deleting, 6-11
managing, 6-10
Variables Window, 6-10, 7-87
Shortcut menu options, 6-10
vector, 1-2
VERSION command, 7-91
viewing
breakpoints, 6-20
command results, 6-13
CPU information, 6-15
instructions during tracing, 6-19
memory, 6-12

w

WAIT command, 7-92
Wait for Assembler Result, 4-25
Wait for compiler to finish, 4-26
Wait for program completion, 4-29
WHEREIS command, 7-93
Window Base Address dialog, 6-9
Window Menu

WinIDE, 4-33
windows

CASMO05W, 8-4

ICS, 6-7

WinIDE, 4-1
Windows 3., 1-1, 1-2, 3-3
Windows 95, 1-1, 1-2, 1-4, 3-3

M68ICS05POM/D

@ MOTOROLA

INDEX

WinIDE, 1-1, 3-1
Assembler/Compiler Tab, 4-23
closing files, 4-13

configuring external programs, 4-23

Edit menu, 4-14
edit options
Undo, 4-14
Edit options, 4-14
Close/New Project, 4-19
Copy, 4-16
Cut, 4-15
Delete, 4-16
Open Project, 4-18
Paste, 4-16
Redo, 4-15
Save Project, 4-18
Save Project As. . ., 4-18
Select All, 4-16
Setup Environment . . ., 4-19
Edit shortcut menu, 4-5
Environment Menu, 4-17
Environment options, 4-16
Setup Fonts. . ., 4-29
Environment Settings dialog
EXEL Tab, 1-5

Environment Settings Dialog, 1-5

exiting, 4-14
file management, 4-11
file options, 4-11

Close File, 4-13

Exit, 4-14

New File, 4-11

Open File, 4-12

Print, 4-13

Print Setup . . ., 4-14

Save File, 4-12

SaveFileAs.. ., 4-13
files, 3-3
filetypes, 4-4

listing, 4-4

source code, 4-4

text, 4-4
font information, 4-17
Genera Environment Tab, 4-20
main window, 4-2

menu options, 4-1, 4-9, 4-10, 6-26, 6-27

menus, 4-9

printing, 4-11

saving files, 4-12

Search options, 4-30
Find Next, 4-32
Fine.. . 4-31
GotolLine..., 4-33
Replace. . ., 4-32

shortcut buttons, 4-7, 6-24

source directory, 4-17

source window, 4-2

starting, 4-3

status bar, 4-3

M68ICS05POM/D

title bar, 4-2
toolbar, 4-7, 6-24
user interface, 4-1
window components, 4-1
Window options, 4-33
Arrange Icons, 4-35
Cascade, 4-34
Minimize All, 4-35
Split, 4-36
Tile, 4-34
windows, 4-1
WinlIDE configuration parameters
storing, 4-17
WINIDE.INI, 1-5
WINIDE.INI file, 4-16
word wrap, 4-22
Word Wrap . . ., 4-22
Word Wrap OFF, 4-23
Wrap to Column, 4-23
Wrap to Window, 4-22

X

X command, 7-94
X index register value, 6-21
XREG command, 7-94

Z

Z command, 7-95

Index-9

INDEX @ MOTOROLA

Index-10 M68ICS05POM/D

	COVER
	CONTENTS
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 POD INSTALLATION
	CHAPTER 3 SOFTWARE INSTALLATION
	CHAPTER 4 THE WinIDE USER INTERFACE
	CHAPTER 5 ASSEMBLER INTERFACE
	CHAPTER 6 ICS05PW SIMULATOR USER INTERFACE
	CHAPTER 7 ICS05PW DEBUGGING COMMAND SET
	CHAPTER 8 EXAMPLE PROJECT
	APPENDIX A S-RECORD INFORMATION
	APPENDIX B SUPPORT INFORMATION
	GLOSSARY
	INDEX
	FIGURES
	Figure 1-1. WinIDE Environment Settings Dialog EXE1 Tab
	Figure 1-2. WinIDE Environment Settings Dialog Assembler/Compiler Tab
	Figure 1-3. WinIDE Debugger Toolbar Button
	Figure 1-4. The WinIDE Assemble/Compile Toolbar Button
	Figure 3-1. The Pick Device Dialog
	Figure 4-1. WinIDE Window Components
	Figure 4-2. WinIDE Status Bar
	Figure 4-3. Edit Shortcut Menu
	Figure 4-4. Marker Sub-menu
	Figure 4-5. WinIDE Toolbar
	Figure 4-6. File Menu
	Figure 4-7. Open File Dialog
	Figure 4-8. Print Dialog
	Figure 4-9. Edit Menu
	Figure 4-10. Environment Menu
	Figure 4-11. Specify project file to open Dialog
	Figure 4-12. Specify project file to save Dialog
	Figure 4-13. Environment Settings Dialog General Environment Tab
	Figure 4-14. Environment Settings Dialog: General Editor Tab
	Figure 4-15. Environment Settings Dialog: Assembler/Compiler Tab
	Figure 4-16. Error Format List
	Figure 4-17. Environment Settings Dialog: EXE 1 (Debugger) and EXE 2 (Programmer) Tabs
	Figure 4-18. Setup Fonts Dialog
	Figure 4-19. Search Menu
	Figure 4-20. Find Dialog
	Figure 4-21. Replace Dialog
	Figure 4-22. Go To Line Number Dialog
	Figure 4-23. The Window Menu
	Figure 4-24. WinIDE with Subordinate Windows Cascaded
	Figure 4-25. WinIDE with Subordinate Windows Tiled
	Figure 4-26. WinIDE with One Source Window Displayed and Remaining Windows Minimized
	Figure 4-27. The WinIDE Editor with Subordinate Windows Minimized
	Figure 4-28. Split Pointer and Bar
	Figure 5-1. WinIDE with CASM05W Assembler Window Displayed
	Figure 5-2. Windows 95 Program Item Property Sheet (Shortcut Property for CASM05W.EXE)
	Figure 5-3. CASM05W for Windows Assembler Parameters
	Figure 6-1. Canÿt Contact Board Dialog
	Figure 6-2. The ICS05PW Windows Default Positions
	Figure 6-3. Code Window in Disassembly Mode with Breakpoint Toggled
	Figure 6-4. Code Window Shortcut Menu
	Figure 6-5. Window Base Address Dialog
	Figure 6-6. Variables Window with Shortcut Menu
	Figure 6-7. Add Variable Dialog
	Figure 6-8. Memory Window with Shortcut Menu
	Figure 6-9. Status Window
	Figure 6-10. Results of Entering the LF Command in the Status Window
	Figure 6-11. Specify Output LOG File! Dialog
	Figure 6-12. The Logfile Already Exists Message
	Figure 6-13. CPU Window with Shortcut Menu
	Figure 6-14. The Change CCR Dialog
	Figure 6-15. Chip Window
	Figure 6-16. Cycles Window
	Figure 6-17. Stack Window
	Figure 6-18. Trace Window
	Figure 6-19. Breakpoint Window with Shortcut Menu
	Figure 6-20. Edit Breakpoint Dialog
	Figure 6-21. PROG05P9 Programmer Pick Window
	Figure 6-22. Programmer Files Window
	Figure 6-23. The Register Block Window
	Figure 6-24. The WinReg Window with Typical Register File Information
	Figure 6-25. WinIDE Toolbar
	Figure 6-26. File Menu
	Figure 6-27. Specify S19 File to Load Dialog
	Figure 6-28. Specify MACRO File to Execute Dialog
	Figure 6-29. Specify MACRO File to Record Dialog
	Figure 6-30. Specify Output LOG File Dialog
	Figure 6-31. Logfile Already Exists Dialog
	Figure 6-32. A Sample Output Log File
	Figure 6-33. ICS05PW Execute Menu
	Figure 6-34. Window Menu
	Figure 6-35. Change Window Colors Dialog
	Figure 7-1. Assembly Window Showing ASM Command with Argument (left), without Argument (right)
	Figure 7-2. Pick Device Dialog
	Figure 7-3. Modify Memory Dialog
	Figure 7-4. PROG05P Programmer Pick Window
	Figure 8-1. CASM05W Window
	Figure B-1. M68ICS05P Schematic Diagram (Sheet 1 of 2)
	Figure B-2. M68ICS05P Schematic Diagram (Sheet 2 of 2)

	TABLES
	Table 1-1. M68ICS05P Specifications
	Table 3-1. The ICS05PW Software Files
	Table 4-1. WinIDE Toolbar Buttons
	Table 4-2. WinIDE Menus and Options Summary
	Table 5-1. Change Base Prefixes/Suffixes
	Table 5-2. Assembler Directives and Conditional Assembler Directives
	Table 5-3. Listing Directives
	Table 5-4. Listing File Fields
	Table 5-5. Pseudo Operations Allowed by the CASM05W
	Table 5-6. Assembler Error Messages
	Table 6-1. Base Prefixes and Suffixes
	Table 6-2. ICS05PW Toolbar Buttons
	Table 6-3. ICS05PW Menus and Options Summary
	Table 7-1. Argument Types
	Table 7-2. ICS05PW Command Overview
	Table 7-3. PROGRAM Commands
	Table A-1. S-Record Fields
	Table A-2. S-Record Field Contents
	Table A-3. S-Record Types
	Table A-4. S0 Header Record
	Table A-5. S1 Header Record
	Table A-6. S-9 Header Record
	Table B-1. M68ICS05P Parts List

	CHAPTER 1 INTRODUCTION
	1.1 OVERVIEW
	1.2 TOOLKIT COMPONENTS
	1.3 HARDWARE AND SOFTWARE REQUIREMENTS
	1.4 TOOLKIT FEATURES
	1.5 SPECIFICATIONS
	1.6 ABOUT THIS USERÿS MANUAL
	1.7 QUICK START INSTRUCTIONS

	CHAPTER 2 POD INSTALLATION
	2.1 OVERVIEW
	2.2 INSTALLING THE M68ICS05P POD

	CHAPTER 3 SOFTWARE INSTALLATION AND INITIALIZATION
	3.1 OVERVIEW
	3.2 THE ICS05PW SOFTWARE COMPONENTS
	3.2.1 The WinIDE Editor
	3.2.2 CASM05W
	3.2.3 ICS05PW

	3.3 INSTALLING THE ICS05PW SOFTWARE
	3.3.1 Installation Steps
	3.2.3 ICS05PW

	3.3 INSTALLING THE ICS05PW SOFTWARE
	3.3.1 Installation Steps
	3.3.2 Starting the ICS05PW Software
	3.3.3 ICS Communication

	CHAPTER 4 THE WinIDE USER INTERFACE
	4.1 OVERVIEW
	4.2 THE WINDOWS INTEGRATED DEVELOPMENT ENVIRONMENT
	4.3 WinIDE MAIN WINDOW
	4.3.1 Main Window Functions
	4.3.2 Main Window Components

	4.4 GETTING STARTED
	4.4.1 Prerequisites for Starting the WinIDE Editor
	4.4.2 Starting the WinIDE Editor
	4.4.3 Opening Source Files
	4.4.4 Navigating the WinIDE Editor
	4.4.5 Using Markers

	4.5 COMMAND-LINE PARAMETERS
	4.6 WinIDE TOOLBAR
	4.7 WinIDE MENUS
	4.8 WinIDE FILE OPTIONS
	4.8.1 New File
	4.8.2 Open File
	4.8.3 Save File
	4.8.4 Save File As . . .
	4.8.5 Close File
	4.8.6 Print File
	4.8.7 Print Setup
	4.8.8 Exit

	4.9 WinIDE EDIT OPTIONS
	4.9.1 Undo
	4.9.2 Redo
	4.9.3 Cut
	4.9.4 Copy
	4.9.5 Paste
	4.9.6 Delete
	4.9.7 Select All

	4.10 WinIDE ENVIRONMENT OPTIONS
	4.10.1 Open Project
	4.10.2 Save Project
	4.10.3 Save Project As . . .
	4.10.4 Close/New Project
	4.10.5 Setup Environment . . .
	4.10.5.1 The General Environment Tab
	4.10.5.2 General Editor Tab
	4.10.5.3 Assembler/Compiler Tab
	4.10.5.4 Executable 1 (Debugger) and Executable 2 (Programmer) Tab

	4.10.6 Setup Fonts

	4.11 WinIDE SEARCH OPTIONS
	4.11.1 Find . . .
	4.11.2 Replace . . .
	4.11.3 Find Next
	4.11.4 Go to Line . . .

	4.12 WinIDE WINDOW OPTIONS
	4.12.1 Cascade
	4.12.2 Tile
	4.12.3 Arrange Icons
	4.12.4 Minimize All
	4.12.5 Split

	CHAPTER 5 ASSEMBLER INTERFACE
	5.1 OVERVIEW
	5.2 CASM05W ASSEMBLER USER INTERFACE
	5.2.1 Passing Command Line Parameters to the Assembler in Windows 3.x
	5.2.2 Passing Command Line Parameters to the Assembler in Windows 95

	5.3 ASSEMBLER PARAMETERS
	5.4 ASSEMBLER OUTPUTS
	5.4.1 Object Files
	5.4.2 Map Files
	5.4.3 Listing Files
	5.4.4 Files from Other Assemblers

	5.5 ASSEMBLER OPTIONS
	5.5.1 Operands and Constants
	5.5.2 Comments

	5.6 ASSEMBLER DIRECTIVES
	5.6.1 BASE
	5.6.2 Cycle Adder
	5.6.3 Conditional Assembly
	5.6.4 INCLUDE
	5.6.5 MACRO

	5.7 LISTING DIRECTIVES
	5.7.1 Listing Files
	5.7.2 Labels

	5.8 PSEUDO OPERATIONS
	5.8.1 Equate (EQU)
	5.8.2 Form Constant Byte (FCB)
	5.8.3 Form Double Byte (FDB)
	5.8.4 Originate (ORG)
	5.8.5 Reserve Memory Byte (RMB)

	5.9 ASSEMBLER ERROR MESSAGES
	5.10 USING FILES FROM OTHER ASSEMBLERS

	CHAPTER 6 ICS05PW SIMULATOR USER INTERFACE
	6.1 OVERVIEW
	6.2 THE ICS05PW IN-CIRCUIT SIMULATOR
	6.2.1 ICS05PW Simulation Speed
	6.2.2 System Requirements for Running the ICS05PW
	6.2.3 File Types and Formats

	6.3 STARTING ICS05PW
	6.4 ICS05PW WINDOWS
	6.5 CODE WINDOWS
	6.5.1 To Display the Code Windows Shortcut Menus
	6.5.2 Code Window Shortcut Menu Functions
	6.5.3 Code Window Keyboard Commands

	6.6 VARIABLES WINDOW
	6.6.1 Displaying the Variables Shortcut Menu
	6.6.2 Variables Window Shortcut Menu Options
	6.6.3 Variable Window Keyboard Commands

	6.7 MEMORY WINDOW
	6.8 STATUS WINDOW
	6.9 CPU WINDOW
	6.9.1 Changing Register Values
	6.9.2 CPU Window Keyboard Commands

	6.10 CHIP WINDOW
	6.10.1 Reading Values in the Chip Window
	6.10.2 Chip Window Keyboard Commands

	6.11 CYCLES WINDOW
	6.12 STACK WINDOW
	6.12.1 Interrupt Stack
	6.12.2 Subroutine Stack

	6.13 TRACE WINDOW
	6.14 BREAKPOINT WINDOW
	6.14.1 Adding a Breakpoint
	6.14.2 Editing a Breakpoint
	6.14.3 Deleting a Breakpoint
	6.14.4 Removing All Breakpoints

	6.15 PROGRAMMER WINDOWS
	6.16 REGISTER BLOCK WINDOW
	6.17 ENTERING DEBUGGING COMMANDS
	6.18 ICS05PW TOOLBAR
	6.19 CS05PW MENUS
	6.20 FILE OPTIONS
	6.20.1 Load S19 File
	6.20.2 Reload Last S19
	6.20.3 Play Macro
	6.20.4 Record Macro
	6.20.5 Stop Macro
	6.20.6 Open Logfile
	6.20.7 Close Logfile
	6.20.8 Exit

	6.21 ICS05PW EXECUTE OPTIONS
	6.21.1 Reset Processor
	6.21.2 Step
	6.21.3 Multiple Step
	6.21.4 Go
	6.21.5 Stop
	6.21.6 Repeat Command

	6.22 ICS05PW WINDOW OPTIONS
	6.22.1 Open Windows
	6.22.2 Change Colors
	6.22.3 Reload Desktop
	6.22.4 Save Desktop

	CHAPTER 7 ICS05PW DEBUGGING COMMAND SET
	7.1 OVERVIEW
	7.2 ICS05PW COMMAND SYNTAX
	7.3 COMMAND-SET SUMMARY
	7.3.1 Argument Types
	7.3.2 Command Summary

	7.4 COMMAND DESCRIPTIONS
	A or ACC - Set Accumulator Value
	ASM - Assemble Instructions
	BELL - Sound PC Bell
	BF - Block Fill Memory
	BR - Set Instruction Breakpoint
	BREAKA - Set Accumulator Breakpoint
	BREAKSP - Set Stack Pointer Breakpoint
	BREAKX - Set Index Register Breakpoint
	C - Set/Clear Carry Bit
	CAPTURE - Capture Changed Data
	CAPTUREFILE or CF - Open/Close Capture File
	CCR - Set Condition Code Register
	CHIPMODE - Set Chip for Simulation
	CLEARMAP - Clear .MAP File
	CLEARSYMBOL - Clear User Symbols
	COLORS - Set Simulator Colors
	CYCLES - Set Cycles Counter
	DASM - Disassemble Memory
	DDRA - Set Port A Direction Register
	DDRB - Set Port B Direction Register
	DUMP - Dump Memory to Screen
	EVAL - Evaluate Expression
	EXIT or QUIT - Exit/Quit Application
	GO - Begin Program Execution
	GOMACRO - Execute Macro after Break
	GOTIL - Execute Until Address
	GOTOCYCLE - Execute to Cycle Counter Value
	H - Set/Clear Half-Carry Bit
	HELP - Open Help
	I - Set/Clear Interrupt Mask
	INFO - Display Line Information
	INPUTA - Set Port A Inputs
	INPUTB - Set Port B Inputs
	INPUTS - Show Port Inputs
	IRQ - Set IRQ Pin State
	LISTOFF - Turn Off Step Listing
	LISTON - Turn On Step Listing
	LOAD - Load S-Records
	LOADDESK - Load Desktop Settings
	LOADMAP - Load Map File
	LOGFILE - Open/Close Log File
	MACRO - Execute Batch File
	MACROEND - Stop Saving Commands to Batch File
	MACROSTART - Save Debug Commands to Batch File
	MD - Display Memory at Address
	MM - Modify Memory
	N - Set/Clear Negative Bit
	NOBR - Remove Breakpoints
	NOSYMBOL - Clear User Symbols
	PC - Set Program Counter
	POD - Change Serial Port
	PORTA or PRTA - Set Port A Output Latches
	PORTB or PRTB - Set Port B Output Latches
	PROGRAM - Start Programmer
	R - Use Register Files
	REG - Show Registers
	REM - Place Comment in Batch/Macro File
	RESET - Simulate Processor Reset
	RESETGO - Reset and Restart MCU
	SAVEDESK - Save Desktop Settings
	SHOWBREAKS - Display Breakpoint Window
	SHOWCODE - Display Code at Address
	SHOWMAP - Show Information in Map File
	SHOWTRACE - Display Trace Window
	SNAPSHOT - Save Window Data to Log File
	SP - Set Stack Pointer
	SS - Execute Source Step(s)
	ST or STEP or T - Execute Single Step
	STACK - Show Stack Window
	STEPFOR - Step Forever
	STEPTIL - Step Until Address
	SYMBOL - Add Symbol
	TRACE - Enable/Disable Tracing
	UPLOAD_SREC - Upload S Record to Screen
	VAR - Display Variable
	VERSION or VER - Display Software Version
	WAIT - Wait for n Cycles
	WHEREIS - Display Symbol Value
	X or XREG - Set X Register Value
	Z - Set/Clear Zero Bit

	CHAPTER 8 EXAMPLE PROJECT
	8.1 OVERVIEW
	8.2 SETTING UP A SAMPLE PROJECT
	8.2.1 Set Up the Environment
	8.2.2 Create the Source Files
	8.2.3 Assemble the Project

	APPENDIX A S-RECORD INFORMATION
	A.1 OVERVIEW
	A.2 S-RECORD CONTENT
	A.3 S-RECORD TYPES
	A.4 S-RECORD CREATION
	A.5 S-RECORD EXAMPLE
	A.5.1 The S0 Header Record
	A.5.2 The First S1 Record
	A.5.3 The S9 Termination Record
	A.5.4 ASCII Characters

	APPENDIX B SUPPORT INFORMATION
	B.1 OVERVIEW
	B.2 FUNCTIONAL DESCRIPTION OF THE KIT
	B.2.1 The Emulator
	B.2.2 Programming

	B.3 TROUBLESHOOTING THE QUICK START
	B.4 TROUBLESHOOTING THE PROGRAMMER
	B.5 SCHEMATIC DIAGRAM AND PARTS LIST

	GLOSSARY
	INDEX

