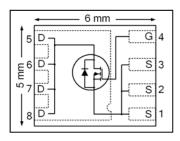


Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- · Lead-Free, RoHS Compliant
- Automotive Qualified *

Description


Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon are. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this product an extremely efficient and reliable device for use in Automotive and wide variety of other applications.

Applications

- Injection
- Heavy Loads
- DC-DC Converter

HEXFET® POWER MOSFET

V _{DSS}	75V
$R_{DS(on)}$ max $(@V_{GS} = 10V)$	8.5mΩ
Q _{G (typical)}	51nC
(@T _{C (Bottom)} = 25°C)	75A

G	D	S
Gate	Drain	Source

Paca Part Number	Bookaga Typa	Standard	Pack	Complete Bart Number
Base Part Number	Package Type	Form	Quantity	Complete Part Number
AUIRFN7107	PQFN 5mm x 6mm	Tape and Reel	4000	AUIRFN7107TR

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	75	V
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	14	
$I_D @ T_A = 70^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	12	
$I_D @ T_{C(Bottom)} = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	75 ©	Α
$I_D @ T_{C(Bottom)} = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	53⑥	
I _{DM}	Pulsed Drain Current ①	300	
P _D @T _A = 25°C	Power Dissipation	4.4	W
P _D @T _{C(Bottom)} = 25°C Power Dissipation		125	VV
	Linear Derating Factor	0.029	W/°C
V _{GS} Gate-to-Source Voltage		± 20	V
E _{AS}	Single Pulse Avalanche Energy ②	123	mJ
I _{AR}	Avalanche Current ①	45	Α
T_J	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		C

HEXFET® is a registered trademark of Infineon.

^{*}Qualification standards can be found at www.infineon.com

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{θJC} (Bottom)	Junction-to-Case @		1.2	
R _{θJC} (Top)	Junction-to-Case @		27	°C/W
$R_{ heta JA}$	Junction-to-Ambient ®		34	C/VV
R _{θJA} (<10s)	Junction-to-Ambient ®		22	

Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	75			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.074		V/°C	Reference to 25°C, I _D = 1.0mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		6.9	8.5	mΩ	$V_{GS} = 10V, I_D = 45A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$
R_G	Internal Gate Resistance		0.82		Ω	
gfs	Forward Transconductance	73			S	$V_{DS} = 25V, I_{D} = 45A$
	Duein to Course Looke no Course			20	^	$V_{DS} = 75V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 75V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	n 1	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge		51	77		$I_D = 45A$
Q_{gs}	Gate-to-Source Charge		15		. 0	$V_{DS} = 38V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		14		nC	$V_{GS} = 10V$
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		37			$I_D = 45A, V_{DS} = 0V, V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		8.0			$V_{DD} = 75V$
t _r	Rise Time		12		no	$I_D = 45A$
$t_{d(off)}$	Turn-Off Delay Time		19		ns	$R_G = 1.8\Omega$
t _f	Fall Time		7.0			V _{GS} = 10V ③
C _{iss}	Input Capacitance		3001			$V_{GS} = 0V$
C _{oss}	Output Capacitance		371		pF	$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance		151			f = 1.0 MHz

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			75		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			300		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage		0.85	1.3	V	$T_J = 25^{\circ}C$, $I_S = 45A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		28		ns	$T_J = 25^{\circ}C$, $I_F = 45A$, $V_{DD} = 38V$
Q _{rr}	Reverse Recovery Charge		145		nC	di/dt = 500A/µs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 0.12mH, $R_G = 50\Omega$, $I_{AS} = 45$ A.
- 3 Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- \P R_{θ} is measured at TJ of approximately 90°C.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994: http://www.irf.com/technical-info/appnotes/an-994.pdf
- © Calculated continuous current based on maximum allowable junction temperature.



Fig. 1 Typical Output Characteristics

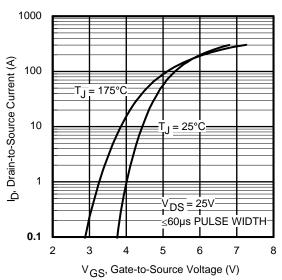


Fig. 3 Typical Transfer Characteristics

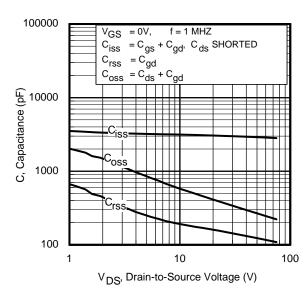


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

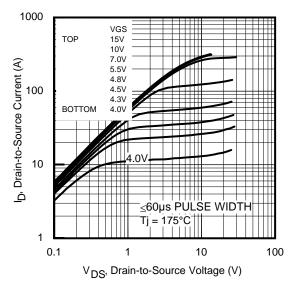


Fig. 2 Typical Output Characteristics

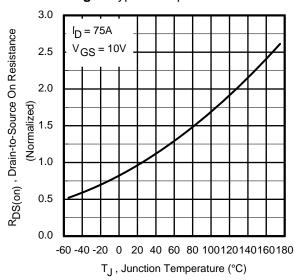


Fig. 4 Normalized On-Resistance vs. Temperature

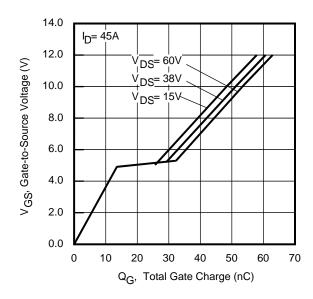
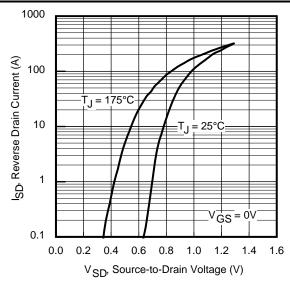



Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

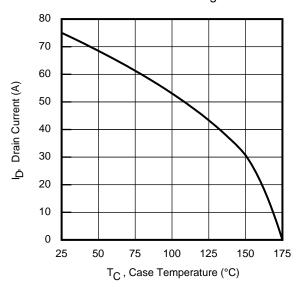


Fig 9. Maximum Drain Current vs. Case Temperature

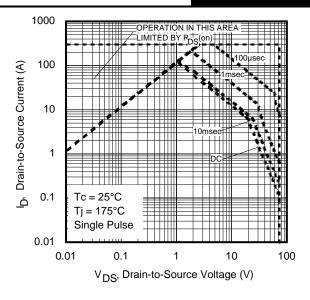


Fig 8. Maximum Safe Operating Area

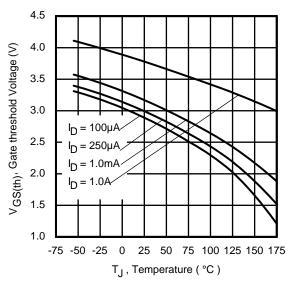


Fig 10. Threshold Voltage vs. Temperature

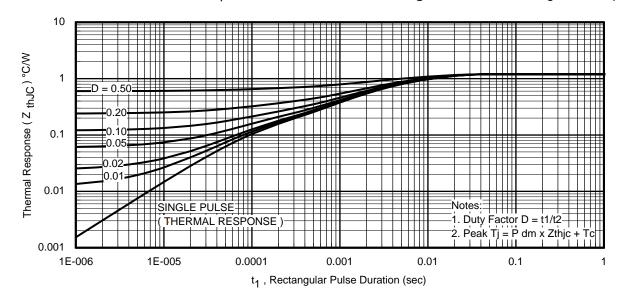


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

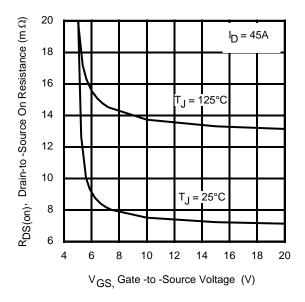


Fig 12. Typical On-Resistance vs. Gate Voltage

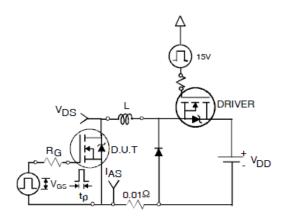


Fig 14a. Unclamped Inductive Test Circuit

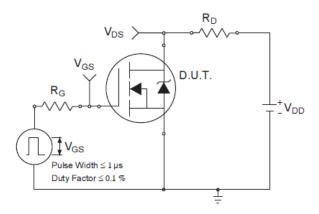


Fig 15a. Switching Time Test Circuit

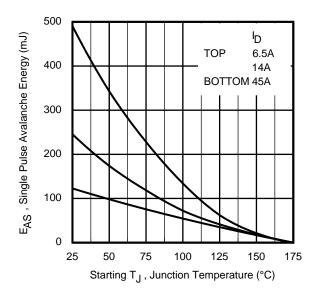


Fig 13. Maximum Avalanche Energy vs. Drain Current

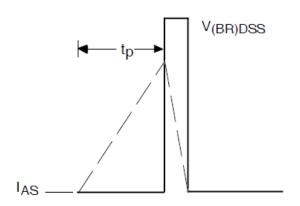


Fig 14b. Unclamped Inductive Waveforms

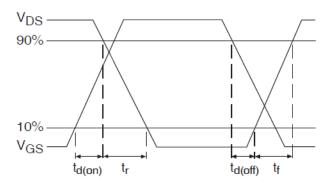
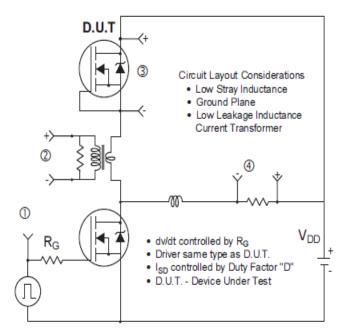



Fig 15b. Switching Time Waveforms

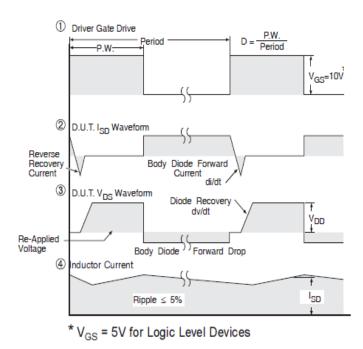
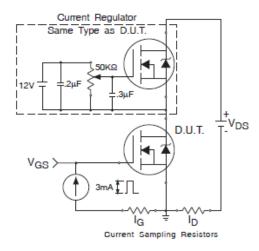



Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

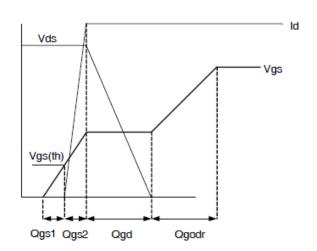
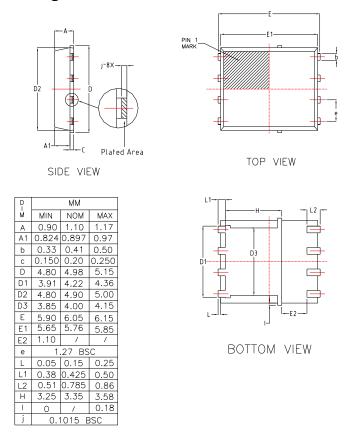
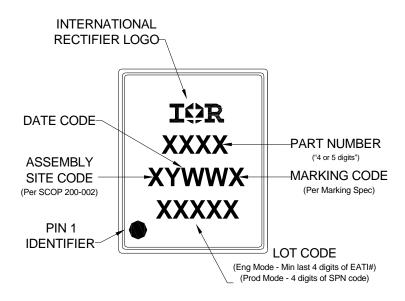
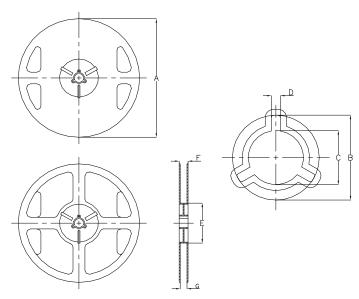



Fig 17b. Gate Charge Waveform

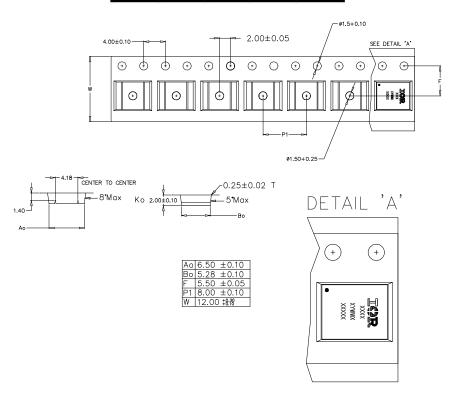

PQFN 5x6 Outline "E" Package Details

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf


PQFN 5x6 Outline "E" Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/



PQFN 5x6 Outline "E" Tape and Reel

NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts.

	RE	EL DIME	NSIONS					
S	STANDARD OPTION (QTY 4000) TR							
	M	ETRIC	IMP	PERIAL				
CODE	MIN	MAX	MIN	MAX				
Α	329.5	330.5	12.972	13.011				
В	20.9	21.5	0.823	0.846				
С	12.8	13.5	0.504	0.532				
D	1.7	2.3	0.067	0.091				
E	97	99	3.819	3.898				
F	Ref	17.4	100	y.				
G	13	14.5	0.512	0.571				

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

Qualificatio	ii iiiioiiiiatioii						
		Automotive					
			(per AEC-Q101)				
Qualificatio			This part number(s) passed Automotive qualification. Infineon's Consumer qualification level is granted by extension of the higher vel.				
Moisture So	ensitivity Level	PQFN 5x6	MSL1				
	Human Body Model		Class H1C (+/- 2000V) [†]				
			AEC-Q101-001				
Charged Device Model Class C5 (+/- 2000V)		Class C5 (+/- 2000V) [†]					
		AEC-Q101-005					
RoHS Com	pliant	Yes					

[†] Highest passing voltage.

Revision History

Ī	Date	Comments			
	10/12/2015	Updated datasheet with corporate template			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.