MB86276 'LIME' Graphics Display Controller Specifications

Revision 1.1a 17th May, 2010

Copyright © FUJITSU SEMICONDUCTOR LIMITED 2005-2010

ALL RIGHTS RESERVED

Notes

The specifications in this manual are subject to change without notice. Contact our Sales Department before purchasing the product described in this manual.

Information and circuit diagrams in this manual are only examples of device applications, they are not intended to be used in actual equipment. Also, Fujitsu accepts no responsibility for infringement of patents or other rights owned by third parties caused by use of the information and circuit diagrams.

The contents of this manual must not be reprinted or duplicated without permission of Fujitsu.

Fujitsu's semiconductor devices are intended for standard uses (such as office equipment (computers and OA equipment), industrial/communications/measuring equipment, and personal/home equipment). Customers using semiconductor devices for special applications (including aerospace, nuclear, military and medical applications) in which a failure or malfunction might endanger life or limb and which require extremely high reliability must contact our Sales Department first. If damage is caused by such use of our semiconductor devices without first consulting our Sales Department, Fujitsu will not assume any responsibility for the loss.

Semiconductor devices fail with a known probability. Customers must use safety design (such as redundant design, fireproof design, over-current prevention design, and malfunction prevention design) so that failures will not cause accidents, injury or death).

If the products described in this manual fall within the goods or technologies regulated by the Foreign Exchange and Foreign Trade Law, permission must be obtained before exporting the goods or technologies.

There is a danger of burns because the IC surface is heated depending on the IC operating conditions. In this case, take safety measures.

All Rights Reserved

• The contents of this document are subject to change without notice.

Burns

Customers are advised to consult with sales representatives before ordering.

- The information, such as descriptions of function and application circuit examples, in this document are
 presented solely for the purpose of reference to show examples of operations and uses of FUJITSU
 SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with
 respect to use based on such information. When you develop equipment incorporating the device based on
 such information, you must assume any responsibility arising out of such use of the information. FUJITSU
 SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.
- Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information.
 FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
- The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

- Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
- Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
- The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Revision history

Date	Version	Page count	Change
2005.2.10	0.1	176	First edition
2005.3.12	0.2	225	The description of Video Capture is added.
2005.6.15	0.92	237	The pin list and the description of modeis are added.
2005.7.14	0.93b	278	DC, AC characteristics are added.
			The description of Memory Map, Dual Monitor, and
			the capacity of SDRAM are updated.
			The table of the pin multiplex is updated.
			Other update.
2005.8.17	0.93c	278	The description of the unimplemented functions, the geometry registers and the analog RGB output, were deleted.
2005.9.19	0.93d	278	Misprint correction.
2005.10.17	0.94	282	P.14 The pin list of thermal balls is added.
			P.15-16 Several pins are renamed to "TESTH" or "TESTL".
			P.26 "TESTL" is added in the table of test pins.
			P.30 RDY_MODE, ENDIAN signals are added.
			P.31 The table of GMODE is updated.
			P.249 The lost character is displayed.
2006.1.18	0.95	281	P.18-19 The description "TOP VIEW" is inserted in Pin diagram.
			P.28 The description was doubled about RDY_MODE and BS_MODE
			is deleted.
			P.29-30 "Connection to CPU" is updated.
			P.31 The paragraph "Graphics memory interface" is moved from Chapter 3.
			P.64 The table of "Resolution and Display Frequency" is updated.
			P.150-151 The LOWD field of MMR register is updated.
			Other: Misprint correction.
2006.1.27	0.96	297	P.10 Connectable Memoey configuration is updated.
			P.21 The description of the symbol regarding VDD/GND is added.
			P.30 The connection between CPU and Lime is updated.
			P.31 The pin information of serial host interface is added.
			P.66 Connection with memory is updated.
			P.81 Chapter 6.8 in previous version is removed.
			P.153 The description of CCF register is added.
			P.160 The description of I2C I/F register is added.
			P.291 The note about AC timing specification of Host I/F is added.
			Other: Misprint correction.

Date	Version	Page count	Change
2006.2.14	0.97	327	P.23 The description "TESTL" is updated.
2006.3.30	0.97a		P.47 The protocol for general call address is updated.
			P.47 Misprint about Acknowledge in the protocol for SCI are corrected.
			P.51 Line transfer of SCI is updated.
			P.52 The description of I2C interface was added at ver.0.96.
			P.138 SCI register list is added.
			P.160 The description of SCI registers are added.
			P.177 DCM,DCE,DCEE registers are changed to DCM0/1/2/3 registers.
			P.279 Timing chart of Host interface for SH3/4, V832, SPARClite
			are added.
			P.295 Timing chart of Host interface for 16bit CPU, 16bit AD-MUX CPU,
			32bit AD-MUX CPU are added.
			Other: Misprint correction.
2006.6.5	1.0		P.28 Note of XRDY signal is updated.
			P.33 Connection of XWE1 signal is updated.
			P.47 Description of 16-bit CPU mode is added.
			P.161 Host register descriptions are added, DMA_ST_ADR, DMA_ED_ADR, ERR_ADR, ERR_DETECT, INT_MSK.
			P.172 Add Revision Register :PIO Base + 0x84
			P.316 Video Capture AC Timing Hold 2ns => 0ns
			P.321 Clear the meaning of tr,tf
2010.3.20	1.1		Remove spec of I2C slave
			Add explanations and revise typos.
2010.5.17	1.1a		Clear the setting of reserverd area

Contents

1 (GENI	ERAL11
1.1	Fea	tures11
1.2 1.2 1.2 1.2 1.2 1.2	.1 .2 .3 .4	ctional Overview12Host CPU interface12External memory interface13Display controller142D Drawing16Special effects18
2 F	PINS	
2.1	Pin	assignment diagram21
2.2	Pin	assignment table
2.3	Pin	mutiplex table
2.4 2.4 2.4 2.4 2.4	.1 .2 .3	t CPU interface
2.5	Gra	phics memory interface
2.6	Vide	eo output interface
2.7	Vide	eo capture interface
2.8	I ² C	interface
2.9	GPI	O interface
2.10	Gen	eral purpose mode pins
2.11	Cloc	k input
2.12	Test	pins
2.13	Res	et sequence
2.14	How	v to switch internal operating frequency
3 F	PRO	CEDURE OF THE HARDWARE INITIALIZATION
3.1	Har	dware reset
3.2	Re-1	reset
3.3	Soft	ware reset
MB86 Rev1		LIME' GDC Specifications 5

	SEMICONDUCTOR CONFIDENTIAL T INTERFACE	14
4.1 Acc	ess Mode	45
4.1.1	SRAM interface	
4.1.2	FIFO interface (fixed transfer destination address)	
4.2 DM	IA Transfer	46
4.2.1	Data transfer unit	46
4.2.2	Address mode	46
4.2.3	Bus mode	47
4.2.4	DMA transfer request	47
4.2.5	Ending DMA transfer	
4.3 Tra	nsfer of Local Display List	48
4.4 Int	errupt	49
4.4.1	Address Error Interrupt	
4.5 SH	3 Mode	49
4.6 Wa	it	49
4.7 16-	bit CPU mode	49
5 I ² C II	NTERFACE CONTROLLER	51
	atures	
	ck diagram	
5.2.1	Block Diagram	
5.2.2	Block Function Overview	53
5.3 Exa	ample application	54
5.3.1	Connection Diagram	
5.3.2	START condition	
5.3.3		55
5.3.4	Addressing	
5.3.5	Synchronization of SCL	
5.3.6	Arbitration	
5.3.7	Acknowledge	
5.3.8	Bus error	
5.3.9	Initialize	
5.3.10	1-byte transfer from master to slave	
5.3.10	1-byte transfer from slave to master	
5.3.11 5.3.12	Recovery from bus error	
5.4 Not	te	62
6 GRA	PHICS MEMORY6	53
0.1 0		<u>.</u>
	nfiguration	
6.1.1	Data type	
6.1.2	Memory Mapping	
6.1.3	Data Format	
6.2 Fra	me Management	67
6.2.1	Single Buffer	67
6.2.2	Double Buffer	
MB86276 Rev1.1a	'LIME' GDC Specifications 6	

FUJII	SU SEMICONDUCTOR CONFIDENTIAL	
6.3	Memory Access	
6.3.	1 Priority of memory accessing	67
6.4	Connection with memory	68
6.4.	•	
	·	
7 C	ISPLAY CONTROLLER	69
7.1	Overview	69
7.2	Display Function	70
7.2.	v 8	70
7.2.		
7.2.		
7.2.	4 Display position control	74
7.3	Display Color	76
7.4	Cursor	77
7.4.		
7.4.	2 Cursor control	77
		-
7.5	Display Scan Control	
7.5. 7.5.		
7.0.	2 Internace display	19
7.6	The external synchronous signal	80
7.7	An example of the external synchronization circuit	80
7.8	Programmable YCbCr/RGB conversion for L1-layer display	83
7.8 7.9	Programmable YCbCr/RGB conversion for L1-layer display DCLKO shift	
7.9	DCLKO shift	85
		85
7.9	DCLKO shift	85 85
7.9 7.10 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display	85 85 86 86
7.9 7.10 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control	85 85 86 86 86
7.9 7.10 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display. .1 Overview .2 Destination Control. .3 Output Signal Control	85 85 86 86 86 87
7.9 7.10 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control .3 Output Signal Control .4 Output Circuit Example	 85 85 86 86 86 87 88
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing	 85 85 86 86 86 87 88 90
7.9 7.10 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing	 85 85 86 86 86 87 88 90
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing	 85 86 86 87 88 90 90
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing .6 Limitation	 85 85 86 86 87 88 90 90 91
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display. .1 Overview .2 Destination Control. .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing .6 Limitation Video Capture function	 85 85 86 86 87 88 90 90 91 91
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing .6 Limitation Video Capture function 1 Input data Formats	 85 85 86 86 87 88 90 90 91 91
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing .6 Limitation Video Capture function 1 Input data Formats 2 Capturing of Video Signal	 85 85 86 86 87 88 90 90 91 91 91 91
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control. .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing .6 Limitation Video Capture function 1 Input data Formats. 2 Capturing of Video Signal 3 Non-interlace Transformation	 85 85 86 86 87 88 90 90 91 91 91 91
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display. .1 Overview .2 Destination Control. .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing .6 Limitation Video Capture function 1 Input data Formats. 2 Capturing of Video Signal 3 Non-interlace Transformation.	 85 85 86 86 87 88 90 90 91 91 91 91 91 91 91 92
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display 1 Overview 2 Destination Control 3 Output Signal Control 4 Output Circuit Example 5 Display Clock and Timing 6 Limitation IDEO CAPTURE 9 Video Capture function 1 1 Input data Formats 2 Capturing of Video Signal 3 Non-interlace Transformation Video Buffer 1 1 Data Form	 85 85 86 86 87 88 90 90 91 91 91 91 91 91 92 92
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display 1 Overview 2 Destination Control 3 Output Signal Control 4 Output Circuit Example 5 Display Clock and Timing 6 Limitation IDEO CAPTURE Video Capture function 1 1 2 2 3 Non-interlace Transformation Video Buffer 1 1 1 2 3 1 2 2 3 1 2 2 3 4 4 4 5 4 4 4 5 4 4 5 4 4 4 4	 85 85 86 86 87 88 90 90 91 91 91 91 91 91 91 92 92 92
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control. .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing .6 Limitation Video Capture function 1 Input data Formats. 2 Capturing of Video Signal 3 Non-interlace Transformation. Video Buffer. 1 Data Form 2 Synchronous Control. 3 Area Allocation	 85 85 86 86 87 88 90 90 91 91 91 91 91 91 92 92 92 92 92
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display .1 Overview .2 Destination Control .3 Output Signal Control .4 Output Signal Control .5 Display Clock and Timing .6 Limitation IDEO CAPTURE Video Capture function 1 Input data Formats. 2 Capturing of Video Signal 3 Non-interlace Transformation. Video Buffer I 1 Data Form 2 Synchronous Control. 3 Area Allocation 4 Window Display	 85 85 86 86 87 88 90 90 91 91 91 91 91 91 92 92 93
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display 1 Overview 2 Destination Control .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing .6 Limitation IDEO CAPTURE State Video Capture function State 1 Input data Formats 2 Capturing of Video Signal 3 Non-interlace Transformation Video Buffer Synchronous Control 3 Area Allocation 4 Window Display 5 Interlace Display	 85 85 86 86 87 88 90 90 91 91 91 91 91 91 92 92 93 93
7.9 7.10 7.11 7.11 7.11 7.11 7.11 7.11 7.11	DCLKO shift Syncronous register update of display Dual Display. 1 Overview 2 Destination Control .3 Output Signal Control .4 Output Circuit Example .5 Display Clock and Timing .6 Limitation IDEO CAPTURE State Video Capture function State 1 Input data Formats 2 Capturing of Video Signal 3 Non-interlace Transformation Video Buffer Synchronous Control 3 Area Allocation 4 Window Display 5 Interlace Display	 85 85 86 86 87 88 90 90 91 91 91 91 91 91 92 92 93 93

Rev1.1a

	J SEMICONDUCTOR CONFIDENTIAL	
	caling	
8.3.1	Down-scaling Function	
8.3.2	Up-scaling Function	
8.3.3	Flow of image processing	
8.4 E	xternal video signal input conditions	99
8.4.1	RTB656 YUV422 input format	
8.4.2	RGB input format	
8.5 Iı	nput Video Signal Parameter Setup	106
8.0 II	iput video Signai rarameter Setup	106
9 DR	AWING PROCESSING	107
9.1 C	oordinate System	107
9.1.1	Drawing coordinates	
9.1.2	Texture coordinates	
9.1.3	Frame buffer	
0.9 E		100
	igure Drawing	
$\begin{array}{c} 9.2.1 \\ 9.2.2 \end{array}$	Drawing primitives	
	Polygon drawing function	
9.2.3	Drawing parameters	
9.2.4	Anti-aliasing function	111
9.3 B	it Map Processing	112
9.3.1	BLT	112
9.3.2	Pattern data format	112
9.4 T	exture Mapping	113
9.4.1	Texture size	
9.4.2	Texture color	
9.4.3	Texture Wrapping	
9.4.4	Filtering	
9.4.5	8.4.5 Texture blending	
9.5 R	endering	115
9.5 п 9.5.1	Tiling	
9.5.1 9.5.2	Alpha blending	
	- 0	
$\begin{array}{c} 9.5.3\\ 9.5.4\end{array}$	Logic operation Hidden plane management (Optional function)	
9.6 D	rawing Attributes	
9.6.1	Line drawing attributes	
9.6.2	Triangle drawing attributes	
9.6.3	Texture attributes	
9.6.4	BLT attributes	
9.6.5	Character pattern drawing attributes	118
10 D	ISPLAY LIST	119
	verview	
10.1.1	Header format	120
10.2 R	endering Command	121
10.2.1	•	
10.2.2	Details of rendering commands	125
11 G	DC REGISTER MAP	135
MB8627 Rev1.1a	6 'LIME' GDC Specifications 8	

FUJIT	้รบ ร	EMICONDUCTOR CONFIDENTIAL	
11.1		al memory register list	
11.1		Host interface register list	
11.1		I ² C interface register list	
11.1		GPIO register list	
11.1		Graphics memory interface register list	
11.1		Display controller register list	
11.1		Video capture register list	
11.1	1.7	Drawing engine register list	148
12	EX	PLANATION OF GDC REGISTERS	154
12.1	Hos	t interface registers	155
12.1		GPIO control registers	
12.1		Peripheral Interrupt related registers	
12.1		I ² C Interface Registers	
	~		. – .
12.2	Gra	phics memory interface registers	174
12.3	Dis	play control registers	177
12.4	Vide	eo capture registers	232
12.5	Dro	wing registers	248
12.5		Drawing control registers	
12.0		Drawing mode registers	
12.5		Triangle drawing registers	
12.5		Line drawing registers	
12.5		Pixel drawing registers	
12.5		Rectangle drawing registers	
12.5		Blt registers	
12.5		2D line with XY setup drawing registers	
12.5	5.9	2D triangle with XY setup drawing registers	
12.5	5.10	Display list FIFO registers	
13	TIN	IING DIAGRAM	275
10.1	a		075
13.1		phics Memory Interface	
13.1 13.1		Timing of read access to same row address Timing of read access to different row addresses	
13.1		Timing of write access to same row address	
13.1		Timing of write access to same row addresses	
13.1		Timing of read/write access to same row address	
13.1		Delay between ACTV commands	
13.1		Delay between Refresh command and next ACTV command	
10.0	ъ.		0.01
13.2		play Timing	
13.2		Non-interlace mode	
13.2		Interlace video mode Composite synchronous signal	
13.2	4.ð	Composite synchronous signal	203
13.3	Hos	t interface Timing	
13.3		CPU read/write timing diagram in SH3 mode (Normally Not Ready Mode)	
13.3		CPU read/write timing diagram in SH3 mode (Normally Ready Mode)	
13.3		CPU read/write timing diagram in SH4 mode (Normally Not Ready Mode)	
13.3		CPU read/write timing diagram in SH4 mode (Normally Ready Mode)	
13.3		CPU read/write timing diagram in V832 mode (Normally Not Ready Mode)	
13.3		CPU read/write timing diagram in V832 mode (Normally Ready Mode)	
13.3	3.7	CPU read/write timing diagram in SPARClite (Normally Not Ready Mode)	290

13.	SU SEMICONDUCTOR CONFIDENTIAL	
	3.9 SH4 single-address DMA write (transfer of 1 long word)	
	3.10 SH4 single-address DMA write (transfer of 8 long words)	
	3.11 SH3/4 dual-address DMA (transfer of 1 long word)	
	3.12 SH3/4 dual-address DMA (transfer of 8 long words)	
	3.13 V832 DMA transfer	
	3.14 SH4 single-address DMA transfer end timing	
	3.15 SH3/4 dual-address DMA transfer end timing	
	3.16 V832 DMA transfer end timing	
	3.17 SH4 dual DMA write without ACK	
	 3.18 Dual-address DMA (without ACK) end timing 3.19 CPU write timing diagram in 16bit CPU mode (Normally 1 	
	3.20 CPU read timing diagram in 16bit CPU mode (Normally N 3.20 CPU read timing diagram in 16bit CPU mode (Normally N	5
	3.21 CPU write timing diagram in 16bit AD-MUX CPU mode	Not Ready Mode/ 301
10.0	(Normally Not Ready Mode)	302
13	3.22 CPU read timing diagram in 16bit AD-MUX CPU mode	
10.0	(Normally Not Ready Mode)	303
13	3.23 CPU write timing diagram in 32bit AD-MUX CPU mode	
10.	(Normally Not Ready Mode)	304
13.	3.24 CPU read timing diagram in 32bit AD-MUX CPU mode	
	(Normally Not Ready Mode)	
14	ELECTRICAL CHARACTERISTICS	306
17		
14.1	Introduction	306
	1101 Oude USI	
14.2	Maximum Rating	
14.3	Recommended Operating Conditions	
14.3 14.3	Recommended Operating Conditions	
	Recommended Operating Conditions	
14.3 14.3	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on	
14.3 14.3 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on DC Characteristics	
14.3 14.3 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on DC Characteristics 4.1 DC Characteristics	
14.3 14.3 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on DC Characteristics 4.1 DC Characteristics	
14.3 14.3 14.4 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on DC Characteristics 4.1 DC Characteristics 4.2 V-I characteristics diagram	307 307 308 308 309 310
14.3 14.3 14.4 14.4 14.4 14.5	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on DC Characteristics 4.1 DC Characteristics 4.2 V-I characteristics diagram AC Characteristics	
14.3 14.4 14.4 14.4 14.5 14.5	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	307 307 308 309 309 309 310 311
14.3 14.4 14.4 14.4 14.4 14.5 14.4 14.4	Becommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics 4.1 DC Characteristics 4.2 V-I characteristics diagram AC Characteristics 5.1 Host interface 5.2 I ² C Interface	307 307 308 309 309 310 311 311 313
14.3 14.4 14.4 14.4 14.5 14.5 14.4 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	307 307 308 308 309 309 310 311 311 311 313 314
14.3 14.4 14.4 14.4 14.5 14.5 14.4 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	307 307 308 309 309 310 311 311 313 314 316
14.3 14.4 14.4 14.4 14.5 14.5 14.5 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	
14.3 14.4 14.4 14.4 14.5 14.5 14.4 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	
14.3 14.4 14.4 14.4 14.5 14.5 14.5 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	307 307 308 309 309 310 311 311 313 314 314 316 316 320
14.3 14.4 14.4 14.4 14.5 14.5 14.4 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	307 307 308 309 309 310 311 311 313 314 314 316 316 320 321
14.3 14.4 14.4 14.4 14.5 14.5 14.4 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	307 307 308 309 309 310 311 311 313 314 314 316 316 316 320 321 322
14.3 14.4 14.4 14.4 14.5 14.5 14.5 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	307 307 308 309 309 310 311 311 313 314 314 316 316 316 320 321 321 322
14.3 14.4 14.4 14.4 14.5 14.5 14.5 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	307 307 308 309 309 310 311 311 313 314 314 316 316 316 320 321 321 322 322 322
14.3 14.4 14.4 14.4 14.5 14.5 14.5 14.4 14.4	Recommended Operating Conditions 3.1 Recommended operating conditions 3.2 Note at power-on 3.2 Note at power-on DC Characteristics	307 307 308 309 309 310 311 311 313 314 314 316 316 320 321 322 322 327 329

1 GENERAL

1.1 Features

CMOS 0.18µm technology Internal and memory frequency : 133MHz (generated by on-chip PLL) Base-clock for display clocks : 400.9MHz (generated by on-chip PLL) Display resolutions typically from 320x240 up to 1280x768 6 layers of overlay display (windows) Alpha Plane and constant alpha value for each layer Digital Video input (various formats including YUV,RGB) Video Scaler (up/down scaling) Brightness, Contrast, Saturation control for video input RGB digital output (8bit x 3) Built-in alpha blending, anti-aliasing and chroma-keying Rendering Engine for various kinds of 2D graphic acceleration functions Texture Mapping Unit for 2D polygon support up to 4096x4096 textures Bit-Blt Unit for transfers up to 4096x4096 areas Alpha Bit-Blt and ROP2 functions External 32-bit SDRAM interface for up to 64MB graphic memory Parallel host interface (FR,SH3,SH4,V850,SparcLite etc) New additional serial control interface as host interface (I2C based) Internal and external DMA support I2C interface and GPIO inputs/outputs Supply voltage 3.3V (I/O), 1.8V (Internal) BGA-320 Package (1.27mm pitch) Typical power consumption < 1.0W (estimated)

Temperature range -40..+85 °C

FUJITSU SEMICONDUCTOR CONFIDENTIAL 1.2 Functional Overview

1.2.1 Host CPU interface

Supported CPU

LIME can be connected to SH3 and SH4 manufactured by RENESAS, V832 by NEC, CPU with address and data multiplex bus like PowerPC by Freescale, FR and SPARClite (MB86833) by Fujitsu.

External Bus Clock

Can be connected at max. 66 MHz (when using SH4 interface)

Ready Mode

Supports normal ready/not ready.

Endian

Supports little endian. Big endian is also available in 16bit mode.

Access Mode

SRAM interface FIFO interface (transfer destination address fixed)

DMA transfer

Supports 1-double word (32 bits) /8-double word (32 bytes) (only SH4) for transfer unit.

ACK used/unused mode can be selected as protocol (only for DAM in dual address mode)

Supports dual address/mode single address mode (only SH4).

Supports cycle steel/burst.

Supports local display list transfer.

Interrupt

Vertical (frame) synchronous detection Field synchronous detection

External synchronous error detection

Drawing command error

Drawing command execution end

1.2.2 External memory interface

LIME can connect SDRAM that data bus width is 32 bits.

Max. 133 MHz is available for operating frequency.

Connectable memory configuration is as shown below.

External Memory Configuration

Туре	Data bus width	Use count	Total capacity
SDRAM 64 Mbits (x32 Bits)	32 Bits	1	8 Mbytes
SDRAM 64 Mbits (x16 Bits)	32 Bits	2	16 Mbytes
SDRAM 128 Mbits (x32 Bits)	32 Bits	1	16 Mbytes
SDRAM 128 Mbits (x16 Bits)	32 Bits	2	32 Mbytes
SDRAM 256 Mbits (x32 Bits)	32 Bits	1	32 Mbytes
SDRAM 256 Mbits (x16 Bits)	32 Bits	2	64 Mbytes
SDRAM 512 Mbits (x32 Bits)	32 Bits	1	64 Mbytes

Please note that EMRS of SDRAM is not supported by LIME.

1.2.3 Display controller

Video data output

Only digital RGB video output is provided.

Screen resolution

LCD panels with wide range of resolutions are supported by using a programmable timing generator as follows:

Resolutions	
1280 × 768	
1024 × 768	
1024 × 600	
800 × 600	
854 × 480	
 640 × 480	
480 × 234	
400 × 234	
 320 × 234	

Screen Resolutions

Note:

These resolutions are mentioned for the sake of giving examples. In practice, any resolution corresponding to a pixel clock value of up to 80MHz can be supported. Note that higher resolution increases memory bandwidth consumption.

Hardware cursor

The LIME GDC supports two hardware cursor functions. Each of these hardware cursors is specified as a 64×64 -pixel area. Each pixel of these hardware cursors is 8 bits and uses the same look-up table as indirect color mode.

Double buffer method

Double buffer method in which drawing window and display window is switched in units of 1 frame enables the smooth animation.

Flipping (switching of display window area) is performed in synchronization with the vertical blanking period using program.

Scroll method

Independent setting of drawing and display windows and their starting position enables the smooth scrolling.

Display colors

Supports indirect color mode which uses the look-up table (color palette) in 8 bits/pixels.

Entry for look-up table (color palette) corresponds to color code for 8 bits, in other words, 256. Color data is each 6 bits of RGB. Consequently, 256 colors can be displayed out of 260,000 colors.

Supports direct color mode which specifies RGB with 16 bits/pixels.

Supports direct color mode which specifies RGB with 24 bits/pixels.

Note:

Rendering is not supported in 24bpp color mode. The host CPU will have to write directly to the memory buffer in this color mode.

Overlay

Traditional compatibility mode

Up to four extra layers (C, W, M and B) can be displayed overlaid.

The overlay position for the hardware cursors is above/below the top layer (C).

The transparent mode or the blend mode can be selected for overlay.

The M- and B-layers can be split into separate windows.

Window display can be performed for the W-layer.

Two palettes are provided: C-layer and M-/B-layer.

The W-layer is used as the video input layer.

Window mode

- Up to six screens (L0 to 5) can be displayed overlaid.
- The overlay sequence of the L0- to L5-layers can be changed arbitrarily.
- The overlay position for the hardware cursors is above/below the L0-layer.
- The transparent mode or the blend mode can be selected for overlay.
- The L5-layer can be used as the blend coefficient plane (8 bits/pixel).
- Window display can be performed for all layers.
- Four palettes corresponded to L0 to 3 are provided.
- The L1-layer is used as the video input layer.
- Background color display is supported in window display for all layers.

1.2.4 2D Drawing

2D Primitives

The LIME GDC can perform 2D drawing for graphics memory (drawing plane) in direct color mode or indirect color mode.

Bold lines with width and broken lines can be drawn. With anti-aliasing smooth diagonal lines also can be drawn.

A triangle can be tiled in a single color or 2D pattern (tiling), or mapped with a texture pattern by specifying coordinates of the 2D pattern at each vertex (texture mapping). At texture mapping, drawing/non-drawing can be set in pixel units. Moreover, transparent processing can be performed using alpha blending. When drawing in single color or tiling without Gouraud shading or texture mapping, 2D Line with XY setup and 2D Triangle with XY setup can be used. Only vertex coordinates are set for these primitives. 2D Triangle with XY setup is also used to draw polygons.

Primitive type	Description
Point	Plots point
Line	Draws line
Triangle	Draws triangle
2D Line with XY setup	Draws lines
	Compared to line, this reduces the host CPU processing load.
2D Triangle with XY setup	Draws Itriangles
	Compared to tiangle, this reduces the host CPU processing
	load.
Arbitrary polygon	Draws arbitrary closed polygon containing concave shapes
	consisting of vertices

2D Primitives

Arbitrary polygon drawing

Using this function, arbitrary closed polygon containing concave shapes consisting of vertices can be drawn. (There is no restriction on the count of vertices, however, the polygon with its sides crossed are not supported.) In this case, as a work area for drawing, polygon drawing flag buffer is used on the graphics memory. In drawing polygon, draw triangle for polygon drawing flag buffer using 2D Triangle with XY setup. Decide any vertex as a starting point to draw triangle along the periphery. It enables you to draw final polygon form in single color or with tiling.

BLT/Rectangle drawing

This function draws a rectangle using logic operations. It is used to draw pattern and copy the image pattern within the drawing frame. It is also used for clearing drawing frame and Z buffer.

Attribute	Description	
Raster operation	Selects two source logical operation mode	
Transparent processing	Performs BLT without drawing pixel consistent with the transparent color.	
Alpha blending	The alpha map and source in the memory is subjected to alpha blending and then copied to the destination.	

BLT Attributes

Pattern (Text) drawing

This function draws a binary pattern (text) in a specified color.

Attribute	Description
Enlarge	Vertically × 2
	Horizontally × 2
	Vertically and Horizontally × 2
Shrink	Vertically \times 1/2
	Horizontally 1/2
	Vertically and Horizontally 1/2

Pattern (Text) Drawing Attributes

Drawing clipping

This function sets a rectangle frame in drawing frame to prohibit the drawing of the outside the frame.

Hidden plane management (Optional function)

LIME GDC supports the Z buffer for hidden plane management as a optional function.

1.2.5 Special effects

Anti-aliasing

Anti-aliasing manipulates line borders of polygons in sub-pixel units and blend the pre-drawing pixel color with color to make the jaggies be seen smooth. It is used as a functional option for 2D drawing (in direct color mode only).

Bold line and broken line drawing

This function draws lines of a specific width and a broken line.

Line Drawing Attributes

Attribute	Description
Line width	Selectable from 1 to 32 pixels
Broken line	Set by 32 bit or 24 bit of broken line pattern

Not support the Anti-aliasing of dashed line patterns.

Alpha blending

Alpha blending blends two image colors to provide a transparent effect. LIME GDC supports two types of blending; blending two different colors at drawing, and blending overlay planes at display. Transparent color is not used for these blending options.

Set a transparent coefficient to the register; the transparent coefficient is applied for transparency processing of one plane.

In addition to the above, the following settings can be performed at texture mapping. When the most significant bit of each texture cell is 1, drawing or transparency can be set. When the most significant bit of each texture cell is 0, non-drawing can be set.

Туре	Description
Drawing	Transparent ratio set in particular register
	While one primitive (polygon, pattern, etc.), being drawn, registered transparent ratio applied
Overlay display	Blends top layer pixel color with lower layer pixel color
	Transparent coefficient set in particular register
	Registered transparent coefficient applied during one frame scan

Alpha Blending

Gouraud Shading

Gouraud shading can be used in the direct color mode to provide real shading and color gradation.

Texture mapping

LIME GDC supports texture mapping to map an image pattern onto the surface of plane. The texture pattern can be laid out in the graphics memory. In this case, max. 4096×4096 pixels can be used.

Drawing of 8-/16- direct color is supported for the texture pattern. For drawing 8-bit direct color, only point sampling can be specified for texture interpolation; only de-curl can be specified for the blend mode.

Function	Description	
Filtering	Point sample	
	Bi-linear filter	
Coordinates correction	Linear	
Blend	De-curl	
	Modulate	
	Stencil	
Alpha blend	Normal	
	Stencil	
	Stencil alpha	
Wrap	Repeat	
	Clamp	
	Border	

Texture Mapping

2.1 Pin assignment diagram

VSS	VINF	VINVS	BIO	BI3	G10	GI3	RI0	RI3	BO4	BO0	G04	GO0	RO5	RO2	DCLKC	VSS	DCLK	VSYNC	VSS
RGBC	VSS	VINHS	BI1	BI4	GI1	GI4	RI1	RI4	BO5	BO1	GO5	G01	RO6	RO3	RO0	HSYNO	CSYNC	VSS	GMOD
XPLLT	XTST	VSS	BI2	BI5	GI2	GI5	RI2	RI5	BO6	BO2	G06	GO2	RO7	RO4	RO1	DISP	VSS	GMOD	GMOD
XSM	SCL	SDA	VSS	VDDE	VDDE	VDDI	VDDE	VDDE	BO7	BO3	G07	GO3	VDDI	VDDE	VDDE	VSS	GV	D31	D30
MD0	MD1	MD2	VDDE													VDDE	D29	D28	D27
MD3	MD4	MD5	VDDE													VDDE	D26	D25	D24
MD6	MD7	MD8	VDDI			VDDI	VSS	VSS	VSS	VSS	VSS	VSS	VSS			VDDI	D23	D22	D21
MD9	MD10	MD11	VDDE			VDDI	VSS	VSS	VSS	VSS	VSS	VSS	VSS			VDDE	D20	D19	D18
MD12	MD13	MD14	VDDE			VDDI	VSS	VSS	VSS	VSS	VSS	VSS	VSS			VDDE	D17	D16	D15
MD15	MD16	MD17	MD18			VDDI	VSS	VSS	VSS	VSS	VSS	VSS	VSS			VDDE	D14	D13	D12
MD19	MD20	MD21	VDDE			VDDI	VSS	VSS	VSS	VSS	VSS	VSS	VSS			D11	D10	D9	D8
MD22	MD23	MD24	VDDE			VDDI	VSS	VSS	VSS	VSS	VSS	VSS	VSS			VDDE	D7	D6	D5
MD25	MD26	MD27	VDDE			VDDI	VSS	VSS	VSS	VSS	VSS	VSS	VSS			VDDE	D4	D3	D2
MD28	MD29	MD30	VDDI			VDDI	VDDI	VDDI	VDDI	VDDI	VSS	VSS	VSS			VDDI	D1	D0	DRAC
MD31	NDQM	NDQM	VDDE					T	OP	VIEV	V					VDDE	DTAC	XWE3	XWE2
MCLK	NDQM	NDQM	VDDE													VDDE	XWE1	XWE0	A23
VSS	MA0	MA1	VSS	VDDE	VDDE	VDDI	PLLVS	PLLVD	MODE	XINT	VDDE	VDDE	VDDI	VDDE	VDDE	VSS	A22	A21	A20
	MA2	VSS	MA9	MA12	MRAS	CLKSO	XRST	CLKS1	BS_M	XRDY	XRD	A1	A4	A7	A10	A13	VSS	A19	A18
MA3	VSS	MA6	MA8	MA11	MA14	MWE	СКМ	S	RDY_N	MODE:	XCS	A0	A3	A6	A9	A12	A15	VSS	A17
VSS	MA4	MA5	MA7	MA10	MA13	MCAS	CLK	VPD	BCLK	MODE	DREQ	XBS	A2	A5	A8	A11	A14	A16	VSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61	60	59
2	77	144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	128
3	78	145	204	203	202	201	200	199	198	197	196	195	194	193	192	191	190	127
4	79	146	205	256	255	254	253	252	251	250	249	248	247	246	245	244	189	126
5	80	147	206													243	188	125
6	81	148	207													242	187	124
7	82	149	208			257	284	283	282	281	280	279	278			241	186	123
8	83	150	209			258	285	304	303	302	301	300	277			240	185	122
9	84	151	210			259	286	305	316	315	314	299	276			239	184	121
10	85	152	211			260	287	306	317	320	313	298	275			238	183	120
11	86	153	212			261	288	307	318	319	312	297	274			237	182	110
12	87	154	213			262	289	308	309	310	311	296	273			236	181	11
13	88	155	214			263	290	291	292	293	294	295	272			235	180	11
14	89	156	215			264	265	266	267	268	269	270	271			234	179	11
15	90	157	216					T	ΟP	VIEV	N					233	178	11!
16	91	158	217													232	177	114
17	92	159	218	219	220	221	222	223	224	225	226	227	228	229	230	231	176	113
18	93	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	112
19	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FUJITSU SEMICONDUCTOR CONFIDENTIAL 2.2 Pin assignment table

Pin	JEDEC		Pin		Pin	JFI	Pin JEDEC Name			Pin JEDEC				
Number			Number		DEC nber	Name	Number		nber	Name	Number		nber	Name
1	A 1	VSS	65	A	13	GO0	129	В	18	CSYNC	193	С	15	RO4
2	B 1 C 1	RGBCK	66 67	A	12	GO4	130	В	17	HSYNC	194	C	14	R07
3 4	C 1 D 1	XPLLT XSM	67 68	A A	11 10	BO0 BO4	131 132	B B	16 15	RO0 RO3	195 196	C C	13 12	GO2 GO6
5	E 1	MD0	69	Ā	9	RI3	132	B	14	RO5 RO6	190	c	11	BO2
6	F 1	MD3	70	A	8	RI0	134	в	13	GO1	198	c	10	BO6
7	G 1	MD6	71	А	7	GI3	135	в	12	GO5	199	С	9	RI5
8	H 1	MD9	72	А	6	GI0	136	в	11	BO1	200	С	8	RI2
9	J 1	MD12	73	Α	5	BI3	137	В	10	BO5	201	С	7	GI5
10	K 1	MD15	74	A	4	BIO	138	В	9	RI4	202	C	6	GI2
11 12	L 1 M 1	MD19 MD22	75 76	A A	3 2	VINVS VINF	139 140	B B	8 7	RI1 GI4	203 204	C C	5 4	BI5 BI2
13	N 1	MD22 MD25	77	В	2	VSS	140	в	6	GI1	205	D	4	VSS
14	P 1	MD28	78	c	2	XTST	142	в	5	BI4	206	Е	4	VDDE
15	R 1	MD31	79	D	2	SCL	143	в	4	BI1	207	F	4	VDDE
16	Т 1	MCLKI	80	Е	2	MD1	144	В	3	VINHS	208	G	4	VDDI
17	U 1	VSS	81	F	2	MD4	145	С	3	VSS	209	н	4	VDDE
18 19	V 1 W 1	MCLKO MA3	82 83	G H	2 2	MD7 MD10	146 147	D E	3 3	SDA MD2	210 211	J K	4 4	VDDE MD18
20	Y 1	VSS	84	J	2	MD10 MD13	147	F	3	MD2 MD5	211		4	VDDE
21	Y 2	MA4	85	ĸ	2	MD16	149	G	3	MD8	212	M	4	VDDE
22	Y 3	MA5	86	L	2	MD20	150	н	3	MD11	214	Ν	4	VDDE
23	Y 4	MA7	87	М	2	MD23	151	J	3	MD14	215	Р	4	VDDI
24	Y 5	MA10	88	N	2	MD26	152	K	3	MD17	216	R	4	VDDE
25 26	Y 6 Y 7	MA13 MCAS	89 90	P R	2 2	MD29 MDQM0	153 154	L M	3 3	MD21 MD24	217 218	T U	4 4	VDDE VSS
20	Y 8	CLK	90 91	T	2	MDQM0	154	N	3	MD24 MD27	210	U	4 5	VDDE
28	Y 9	VSS	92	Ū	2	MA0	156	P	3	MD30	220	Ŭ	6	VDDE
29	Y 10	BCLKI	93	V	2	MA2	157	R	3	MDQM1	221	U	7	VDDI
30	Y 11	MODE1	94	W	2	VSS	158	т	3	MDQM3	222	U	8	PLLVS
31	Y 12		95	W	3	MA6	159	U	3	MA1	223	U	9	PLLVD
32 33	Y 13 Y 14		96 97	W W	4 5	MA8 MA11	160 161	V V	3 4	VSS MA9	224 225	U U	10 11	MODE0 XINT
33	Y 14		97 98	W	5 6	MA14	161	v	4 5	MA9 MA12	225	U	12	VDDE
35	Y 16		99	Ŵ	7	MWE	163	Ň	6	MRAS	227	U	13	VDDE
36	Y 17		100	W	8	CKM	164	V	7	CLKS0	228	Ū	14	VDDI
37	Y 18		101	W	9	S	165	V	8	XRST	229	U	15	VDDE
38	Y 19		102	W	10	RDY_M	166	V	9	CLKS1	230	U	16	VDDE
39 40	Y 20 W 20		103 104	W W	11 12	MODE2 XCS	167	V V	10 11	BS_M XRDY	231 232	U T	17 17	VSS VDDE
40	V 20 V 20		104	W	13	A0	168 169	V	12	XRD	232	R	17	VDDE
42	U 20		106	w	14	A3	170	v	13	A1	234	P	17	VDDI
43	т 20		107	W	15	A6	171	V	14	A4	235	Ν	17	VDDE
44	R 20		108	W	16	A9	172	V	15	A7	236	М	17	VDDE
45	P 20		109	W	17	A12	173	V	16	A10	237	L	17	D11
46 47	N 20 M 20		110 111	W W	18 19	A15 VSS	174 175	V V	17 18	A13 VSS	238 239	K J	17 17	VDDE VDDE
48	L 20		112	V	19	A19	176	Ů	18	A22	240	н	17	VDDE
49	K 20		113	Ŭ	19	A21	177	Т	18	XWE1	241	G	17	VDDI
50	J 20	D15	114	т	19	XWE0	178	R	18	DTACK	242	F	17	VDDE
51	H 20		115	R	19	XWE3	179	Р	18	D1	243	E	17	VDDE
52	G 20		116	P	19	D0	180	N	18 10	D4 D7	244	D	17	VSS
53 54	F 20 E 20		117 118	N M	19 19	D3 D6	181 182	M L	18 18	D7 D10	245 246	D D	16 15	VDDE VDDE
55	D 20		119	L	19	D0 D9	183	ĸ	18	D10 D14	247	D	14	VDDL
56	C 20		120	ĸ	19	D13	184	J	18	D17	248	D	13	GO3
57	в 20	GMOD0	121	J	19	D16	185	н	18	D20	249	D	12	G07
58	A 20		122	Н	19	D19	186	G	18	D23	250	D	11	BO3
59	A 19		123	G	19	D22	187	F	18	D26	251	D	10	BO7
60 61	A 18 A 17		124 125	F	<u>19</u> 19	D25 D28	188 189	E D	18 18	D29 GV	252 253	D D	9 8	VDDE VDDE
62	A 17		125	D	19	D20 D31	190	c	18	VSS	253	D	7	VDDL
63	A 15		127	c	19	GMOD1	191	c	17	DISP	255	D	6	VDDE
64	A 14		128	в	19	VSS	192	С	16	RO1	256	D	5	VDDE

Pin		DEC	Name
Number 257	Nun G	nber 7	VDDI
258	-		VDDI
259	H J	7	VDDI
260	ĸ	7	VDDI
261			VDDI
262	M	7	VDDI
263	N	7	VDDI
264	P	7	VDDI
265	P	8	VDDI
266	P P	9	VDDI
267	P	10	VDDI
268	P P	11	VDDI
269	Р	12	VSS
270	Р	13	VSS
271	Р	14	VSS
272	Ν	14	VSS
273	Μ	14	VSS
274	L	14	VSS
275	ר א א ה ה ה ה ה ה ה א ר א י	14	VSS
276	J	14	VSS
277	Н		VSS
278	G	14	VSS
279	כ ב ב ב ב ב ד ר א ר ד ט ט ט ט ט ט ט	13	VSS
280	G G	12	VSS
281	G	11	VSS
282	G	10	VSS
283	G	9	VSS
284	G	8 8	VSS VSS
285 286	H J	0 8	VSS
280	K	8	VSS
288	L	8	VSS
289	M	8	VSS
290	N	8	VSS
291	N	9	VSS
292	N	10	VSS
293	N	11	VSS
294	N	12	VSS
295	Ν	13	VSS
296	М	13	VSS
297	L	13	VSS
298	Κ	13	VSS
299	J	13	VSS
300	н	13	VSS
301	Н	12	VSS
302	н	11	VSS
303	н	10	VSS
304	Ι Ι Ι Ι Ι Υ Ι Χ Ι Δ Δ Δ Ι Ι Ι	9	VSS
305	J	9	VSS VSS
306 307	K L	9 9	VSS VSS
307	M	9	VSS
308	M	9 10	VSS
309	M	11	VSS
310	M	12	VSS
312	L	12	VSS
313	ĸ	12	VSS
314	J	12	VSS
315			VSS
316	J		VSS
317	IX.	10	VSS
318	L	10	VSS
319	L	11	VSS
320	Κ	11	VSS

Group	Symbol	description
GND group:	VSS/PLLVSS/Low	Ground
	TESTL	Connect Ground.
1.8V group:	VDDL/VDDI	1.8-V power supply
	PLLVDD	PLL power supply (1.8 V)
3.3V group:	VDDH/VDDE	3.3-V power supply
	тезтн	Input a 3.3 V-power supply

24

FUJITSU SEMICONDUCTOR CONFIDENTIAL 2.3 Pin mutiplex table

BGA			pin name				SP/CAP-N			ost VF MO	
Pin No.	PAD No.		(GMODE[2:0]=0)	Func	VO		MODE[2		16bit	16bit	32 bit
			(000002[2:0]-0)			0×1	0×2	0x3		AD-MUX	AD- MUX
A2	1	1	VINFID	CAP	- 1						
A3	2	2	VINVSYNC	CAP	<u> </u>						
B3	3	3	VINHSYNC	CAP	- 1						
B1	5	4	RGBCLK	CAP	- 1						
C1	8	5	TESTH	TEST	<u> </u>	VDDE	VDDE	VDDE	VDDE	VDDE	VDDE
C2	9	6	TESTH	TEST	- 1	VDDE	VDDE	VDDE	VDDE	VDDE	VDDE
D1	10	7	TESTH	TEST	- 1	VDDE	VDDE	VDDE	VDDE	VDDE	VDDE
D2	11	8	SCL	120	10						
D3	12	9	SDA	120	10						
E1	16	10	MDO	MEC	10						
E2	17	11	MD1	MEC	10						
E3	18	12	MD2	MEC	10						
F1	19	13	MD3	MEC	10						
F2	23	14	MD4	MEC	10						
F3	24	15	MD5	MEC	10						
G1	25	16	MD6	MEC	10						
G2	28	17	MD7	MEC	10						
G3	27	18	MD8	MEC	10						
H1	28	19	MD9	MEC	10						
H2	29	20	MD10	MEC	10						
H3	30	21	MD11	MEC	10						
J1	31	22	MD12	MEC	10						
J2	32	23	MD13	MEC	10						
J3	34	24	MD14	MEC	10						
K1	35	25	MD15	MEC	10						
K2	36	26	MD16	MEC	10						
K3	37	27	MD17	MEC	10						
K4	38	28	MD18	MEC	10						
L1	39	29	MD19	MEC	10						
L2	40	30	MD20	MEC	10						
L3	41	31	MD21	MEC	10						
M1	42	32	MD22	MEC	10						
M2	43	33	MD23	MEC	10						
M3	47	34	MD24	MEC	10						
N1	48	35	MD25	MEC	10						
N2	49	36	MD26	MEC	10						
N3	50	37	MD27	MEC	10						
P1	51	38	MD28	MEC	0						
P2	52	39	MD29	MEC	10						
P3	53	40	MD30	MEC	10						
R1	54	41	MD31	MEC	10						
T1	58	42	MCLKI	MEC							
V1	60	43	MCLKO	MEC	0						
R2	62	44	MDQMO	MEC	0						
R3	63	45	MDQ M1	MEC	0						
T2	64	46	MDQ M2	MEC	0						
T3	65	47	MDQM3	MEC	0						
U2	66	48	MAO	MEC	0						
U3	67	49	MA1	MEC	0						

D.C.A			_ :			DIS	SP/CAP-N	lUX	Ho	st VF MOI)E[2:0]
BGA	PAD No.		pin name	Func	٧O	G	MODE[2:	0]	16bit	16bit	32 bit
Pin No.			(GMODE[2:0]=0)			0×1	0×2	0x3	1	AD-MUX	AD-MUX
V2	68	50	MA2	MEC	0						
W1	69	51	MA3	MEC	0						
Υ2	72	52	MA4	MEC	0						
73	73	53	MA5	MEC	0						
W3	74	54	MA6	MEC	0						
Y4	75	55	MA7	MEC	0						
W4	76	56	MA8	MEC	0						
V4	77	57	MA9	MEC	0						
Y5	78	58	MA10	MEC	0						
W5	79	59	MA11	MEC	0						
V5	81	60	MA12	MEC	0						
Y6	82	61	MA13	MEC	0						
W6	83	62	MA14	MEC	0						
V6		63	MRAS	MEC	0						
Y7	87	64	MCAS	MEC	0						
W7	88	65	MWE	MEC	0						
V7	91	66	CLKSELO	CLOCK	- 1						
W8	92	67	CKM	CLOCK							
V8	93	68	XRST	Host I/F	<u> </u>						
U8	94	69	PLLVSS	CLOCK	<u> </u>						
- Y8	95	70	CLK	CLOCK	- 1						
W9	96	71	S	CLOCK	<u> </u>						
U9	97	72	PLLVDD	CLOCK	<u> </u>						
V9	98	73	CLKSEL1	CLOCK	- 1						
W10	100	74	RDY MODE	Host I/F	<u> </u>				Low	Low	Low
V10	101	75	BS MODE	Host I/F							
Y9	103	76	TESTL	TEST		VSS	VSS	VSS	VSS	VSS	VSS
U10	104	77	MODEO	Host I/F					Low	High	Low
Y11	105	78	MODE1	Host I/F					Low	Low	High
W11	106	79	MOD E2	Host I/F					High	High	High
V11	109	80	XRDY	Host I/F	OUD						
U11	110	81	XINT	Host I/F	0						
Y12	111	82	DREQ	Host I/F	0						
Y10	114	83	BCLKI	Host I/F							
W12	116	84	XCS	Host I/F							
V12	117	85	XRD	Host I/F						L	
Y13	118	86	XBS	Host I/F						<u>ow when i</u>	
W13	119	87	A0	Host I/F					A1	Low	Low
V13	120	88	A1	Host I/F					A2	Low	Low
Y14	121	89	A2	Host I/F					A3	Low	Low
W14	122	90	A3	Host I/F	1				A4		
V14	128	91	A4	Host I/F	10				A5	AD16	AD16
Y15	127	92	A5	Host I/F	10				AB	AD17	AD17
W15	128	93 94	A6	Host I/F	10 10				A7	AD18	AD18
V15	129			Host I/F					A8 	AD19	AD19
Y16	130	95 08	A8	Host I/F	10				A9	AD20	AD20
W16 V16	131 132	96 97	A9	HostI/F HostI/F	10 10				A10	AD21 AD22	AD21 AD22
			A10						A11		
¥17 W17	133 134	98 99	A11 A12	<u>Hostl/F</u> Hostl/F	10 10				A12	AD23	AD23 AD24
V17	134 138	100		HostI/F	10				A13 A14	Low Low	AD24 AD25
			A13 A14								
Y18	139 140		A14 A15	<u>Hostl/F</u> Hostl/F	10				A15	Low	AD26
W18	140	102	IA10	n ost i/F	10				A16	Low	AD27

BGA			nin name			DI	SP/CAP-N	лUX	Ho	st VF MOI	E[2:0]
	PAD No.		pininame KeMonistra.ot-ot	Func	VO		3 MODE[2:	:0]	16bit	16bit	32 bit
Pin No.			(GMODE[2:0]=0)			0×1	0×2	0x3		AD-MUX	AD-MUX
Y19	141	103	A16	H ost I/F	10				A17	Low	AD28
W20	142	104	A17	H ost I/F	10				A18	Low	AD29
V20	143	105	A18	H ost I/F	10				A19	Low	AD30
V19	144	106	A19	H ost I/F	10				A20	Low	AD31
U20	147	107	A20	H ost I/F	Ι				A21	Low	Low
U19	148	108	A21	H ost I/F	1				A22	Low	Low
U18	149	109	A22	H ost I/F	Ι				A23	Low	Low
T20	150	110	A23	H ost I/F	Ι				Low	Low	Low
T19	151	111	XWEO	H ost I/F	Ι						
T18	152	112	XWE1	Host I/F	Т						
R20	153	113	XWE2	H ost I/F	Ι				RDYSW	RDYSW	RDYSW
R19	154	114	XWE3	H ost I/F	Ι				ENDIAN	ENDIAN	Low
R18	155	115	DTACK	H ost I/F	Ι				InputL	, ow when i	unus ed.
P20	158	116	DRACK	H ost I/F	Ι					ow when i	
P19	160	117	DO	H ost I/F	10				DO	ADO	ADO
P18	161	118	D1	H ost I/F	10				D1	AD1	AD1
N20	162	119	D2	Host I/F	10				D2	AD2	AD2
N19	163	120	D3	H ost I/F	10				D3	AD3	AD3
N18	164	121	D4	H ost I/F	10				D4	AD4	AD4
M20	165	122	D5	H ost I/F	10				D5	AD5	AD5
M19	166	123	D6	Host I/F	10				D6	AD6	AD6
M18	167	124	D7	H ost I/F	10				D7	AD7	AD7
L20	171	125	D8	H ost I/F	10				D8	AD8	AD8
L19	172	126	D9	H ost I/F	10				D9	AD9	AD9
L18	173	127	D10	H ost I/F	10				D10	AD10	AD10
L17	174	128	D11	Host I/F	10				D11	AD11	AD11
K20	175	129	D12	H ost I/F	10				D12	AD12	AD12
K19	176	130	D13	Host I/F	10				D13	AD13	AD13
K18	178	131	D14	H ost I/F	10				D14	AD14	AD14
J20	179	132	D15	Host I/F	10				D15	AD15	AD15
J19	184	133	D16	H ost I/F	10	D 16	SROO	SR O2			
J18	185	134	D17	Host I/F	10	D 17	SR01	SR 03			
H20	188	135	D18	H ost I/F	10	D 18	SRO2	SRO4			
H19	187	136	D19	H ost I/F	10	D 19	SR03	SR 05			
H18	188	137	D20	H ost I/F	10	D20	SRO4	SR O6			
G20	189	138	D21	H ost I/F	10	D21	SR05	SR07			
G19	191	139	D22	H ost I/F	10	D22	SR06	SG02			
G18	192	140	D23	H ost I/F	10	D23	SR07	SG03			
F20	193	141	D24	H ost I/F	10	D24	SGOO	SG04			
F19	194	142	D25	Host I/F	10	D25	SG01	SG05			
F18	195	143	D26	H ost I/F	10	D26	SG02	SGO6			
E20	196	144	D27	H ost I/F	10	D27	SGO3	SG07			
E19	197	145	D28	Host I/F	10	D28	SG04	SBO2			
E18	198	146	D29	Host I/F	10	D29	SG05	SB03			
D20	202	147	D30	H ost I/F	10	D30	SG06	SB04			
D19	203	148	D31	Host I/F	10	D31	SG07	SB05			
C20	206	149	GMODE2	Others	1	Low	Low	Low			
C19	207	150	GMODE1	Others	i	Low	High	High			
B20	208	151	GMODEO	Others	i	High	Low	High			

BGA			pin name			DI	SP/CAP-N	лUX	Host VF MODE[2:0]		
Pin No.	PAD No.		(GMODE[2:0]=0)	Func	VO.	(GMODE[2:0]		16bit	16bit	32 bit
1 11 140.			(0100002[2:0]-0)			0×1	0x2	0x3		AD-MUX	AD- MUX
D18	209	152	GV	DISP	0						
C17	202	153	DISPE	DISP	0						
B18	213	154	CSYNC	DISP	0						
A19	214	155	VSYNC	DISP	10						
B17	215	156	HSYNC	DISP	10						
A18	218	157	DCLKI	DISP	- 1						
A16	220	158	рсцко	DISP	0						
B16	223	159	R00	DISP	0	R 00	SBOO	SBO6			
C16	224	160	RO1	DISP	0	RO1	SBO1	SBO7			
A15	226	161	R02	DISP	0	R 02	SBO2	R 02			
B15	227	162	RO3	DISP	0	R O3	SBO3	R O3			
C15	228	163	RO4	DISP	0	RO4	SBO4	RO4			
A14	229	164	R05	DISP	0	R 05	SBO5	R 05			
B14	230	165	R06	DISP	Ō	R 06	SB06	R 06			
C14	233	166	R07	DISP	0	RO7	SBO7	RO7			
A13	234	167	G00	DISP	Ō	600	RO2	G02			
B13	238	168	GO1	DISP	Ō	G 0 1	RO3	603			
C13	237	169	G02	DISP	0	G 02	RO4	604			
D13	238	170	603	DISP	Ō	603	RO5	G05			
A12	239	171	G04	DISP	Ō	604	R06	G06			
B12	240	172	G05	DISP	0	G 05	RO7	607			
C12	241	173	G06	DISP	Ō	G 06	602	802			
D12	242	174	G07	DISP	Ō	G 07	603	BO3			
A11	246	175	BOO	DISP	0	BOO	604	804			
B11	246	176	B01	DISP	Ō	B01	G05	B05			
C11	247	177	B02	DISP	Ō	B02	G06	806			
D11	249	178	B03	DISP	0	BO3	607	B07			
A10	250	179	B04	DISP	Ō	B04	BO2				
B10	251	180	B05	DISP	Ō	B05	BO3				
C10	252	181	B06	DISP	ō	B06	804				
D10	253	182	B07	DISP	ŏ	B07	805				
C9	259	183	RI5	CAP	vo	G PIOO	806	R 15			
B9	260	184	RI4	CAP	vo	G PI 01	B07	R14			
A9	260	185	RI3	CAP	VO	G PIO2	GPIO0	RB			
C8	262	186	RI2	CAP	VO	G PIO3	GPI01	RI2			
B8	263	187	RI1	CAP	vo	G PI 04	GPI02	RI1			
A8	266	188	RIO	CAP				RID			
C7	260	189	GI5	CAP			+	GI5			
87	268	190	GI4	CAP			-	GI4			
A7	268	190	G14 G13	CAP			-	G14 G13			
C6	209	191	G13 G12	CAP				G13 G12			
86	270	192	G12 G11	CAP		VIN7		G12 G11			
B6 A6	274	<u>193</u> 194	GIO	CAP				GIO			
A0 C5	275	194	815	CAP			VIN6 VIN5	815			
	270	195	80 814	CAP		VIN5 VIN4	VINO VIN4	814			
B5											
A5 C4	279 280	<u>197</u> 198	813 812	CAP CAP		VIN3 VIN2	VIN3 VIN2	BI3 BI2			
B4	281	199	BI1	CAP		VIN1	VIN1	BI1			
A4	282	200	80	CAP		VINO	VINO	BIO			

FUJITSU SEMICONDUCTOR CONFIDENTIAL 2.4 Host CPU interface

1) Parallel interface mode

Pin name	I/O	Description
MODE0-2	Input	Host CPU mode select
RDY_MODE	Input	Normally ready, Not ready select
BS_MODE	Input	BS signal with/without select
XRST	Input	Hardware reset ("L"=Reset, Set to low level when power-on)
D0-31	In/Out	Host CPU bus data
A0-A23	Input	Host CPU bus address (In the V832 mode, A[24] is connected to XMWR.)
BCLKI	Input	Host CPU bus clock
XBS	Input	Bus cycle start signal
XCS	Input	Chip select signal
XRD	Input	Read strobe signal
XWE0	Input	Write strobe for D0 to D7 signal
XWE1	Input	Write strobe for D8 to D15 signal
XWE2	Input	Write strobe for D16 to D23 signal
XWE3	Input	Write strobe for D24 to D31 signal
XRDY	Output Tri-state *(1)	Wait request signal (In the SH3 mode, when this signal is "0", it indicates the wait state; in the SH4, V832 and SPARClite modes, when this signal is "1", it indicates the wait state.)
DREQ	Output	DMA request signal (This signal is low-active in both the SH mode and V832 mode.)
DRACK/DMAAK	Input	Acknowledge signal in response to DMA request (DMAAK is used in the V832 mode; this signal is high-active in both the SH mode and V832 mode.)
DTACK/XTC	Input	DMA transfer strobe signal (XTC is used in the V832 mode. In the SH mode, this signal is high-active; in the V832 mode, it is low-active.)
XINT	Output	Interrupt signal issued to host CPU (In the SH mode, and SPARClite this signal is low-active; in the V832 mode, it is high-active)

Table 2-1 Host CPU Interface Pins

With regard to BCLKI and XRST, the details, please refer "14.3.2 Note at power-on".

*(1) Tri-state output of XRDY is valid in SH3, SH4, V832, and SPARClite. In 16-bit SRAM I/F, 16-bit AD I/F, and 32-bit AD I/F, it drives "High" or "Low". When more than two devices are connected to 16-bit SRAM I/F, 16-bit AD I/F, and 32-bit AD I/F, insert the tri-state buffer between XRDY of LIME and the CPU. Refer to the following note.

Case 1:

If there is no peripheral device to drive the hardware wait and it is possible for the CPU to ignore the XRDY signal in other than from Lime, then it is not necessary to account for this problem. Simply connect the XRDY of Lime to the XRDY of the CPU.

Case 2:

If the condition is other than the above, put the tri-state buffer between Lime's XRDY and CPU's XRDY as shown below.

LIME can be connected to the Renesas SH4 (SH7750), SH3 (SH7709) NEC V832 and Fujitsu SPARClite (MB86833) without external circuit. In the SRAM interface mode, LIME can be used with any other CPU as well. The host CPU is specified by the MODE0 to 2 pins.

MODE 2	MODE 1	MODE 0	CPU
L	L	L	SH3
L	L	Н	SH4
L	Н	L	V832
L	Н	Н	SPARClite
н	L	L	General-purpose 16bit CPU with SRAM interface
н	L	н	General-porpose 16bit CPU with address and data multiplex interface
н	Н	L	General-purpose 32bit CPU with address and data multiplex interface
Н	Н	Н	Reserved

2.4.1 Ready signal mode

The MODE2 pin can be used to set the ready signal level when the bus cycle of the host CPU terminates. For the normally not ready mode, set the software wait to 0 or 1 cycles. When using this device in the normally ready mode, set the software wait to 2 cycles. When using this device in the normally not ready mode, set the software wait to one cycle. (When **BS_MODE = H**, three cycles are needed for the software wait.)

The 'normally not ready mode' is the mode in which the LIME XRDY signal is always in the wait state and Ready is returned only when read/write is ready.

The 'normal ready mode' is the mode in which the LIME XRDY signal is always in the Ready state and it is put into the wait state only when read/write cannot be performed immediately.

RDY_MODE	Ready signal operation					
L	Recognizes XRDY signal as 'not ready level' and terminates bus cycle (normally not ready mode)					
Н	Recognizes XRDY signal as 'ready level' and terminates bus cycle (normally ready mode)					

Ready Signal Mode

RDYSW is for an active signal level on 16bit SRAM I/F, 16bit A/D multiplexed I/F, and 32bit A/D multiplexed I/F modes. High active or low active can be selected.

RDYSW	RDYSW signal operation					
L	Recognizes XRDY signal as 'not ready level' and terminates bus cycle					
_	(normally not ready mode)					
ц	Recognizes XRDY signal as 'ready level' and terminates bus cycle (normally					
11	ready mode)					

2.4.2 BS signal mode

Connection to a CPU without the BS signal can be made via the **BS_MODE** signal. This setting can be performed for all CPU modes. To connect to a CPU without the BS signal, set the **BS_MODE** signal to "High" level.

When not using the BS signal, fix the BS pin of LIME at "High" level.

When using the **BS_MODE** signal as "High" level, with the normally ready mode established, set the CPU software wait to three cycles.

BS Signal Mode

BS_MODE Operation of BS signal		Operation of BS signal
L		Connects to CPU with BS signal
Н		Connects to CPU without BS signal

2.4.3 Endian

LIME has bi-endian mode for a halfword ordering of 16bit CPU.

ENDIAN signal is for 16bit SRAM I/F and 16bit A/D multiplexed I/F modes. The half word ordering of Lime can be selected from either little or big.

In the case of CPUs with the byte swapping, please note it.

LIME operates in little-endian mode. All the register address descriptions in the specifications are byte address in little endian. When using a big-endian CPU, note that the byte-or word-addresses are different from these descriptions.

Endian Mode for 16-bit CPU

ENDIAN	Operation of BS signal				
L	Little endian for the halfword ordering				
Н	Big endian for the halfword ordering				

32

2.4.4 Note about the connection to CPU

The data signal is 32 bits (fixed).

The address signal is 32 bits (per one double-word) \times 24, and has a 64-Mbyte address field. (16-MByte address space is provided for V832 and SPARClite.)

The external bus operating frequency is up to 66 MHz.

In the SH4, V832, and SPARClite modes, when the XRDY signal is low, it is in the ready state. However, in the SH3 mode, when the XRDY signal is low, it is in the wait state. This signal is a tristate output that is synchronized with the rising edge of BCLKI.

DMA data transfer is supported using an external DMA controller.

An interrupt signal is generated to the host CPU.

The XRST input must be kept low for at least 300 µs after setting the S (PLL reset) signal to high.

In the V832 mode, LIME signals are connected to the V832 CPU as follows:

LIME Pins	V832 Signals		
A24	XMWR		
DTACK	XTC		
DRACK	DMAAK		

How to connect between Lime and CPUs is shown as the following table.

Pin name	In/Out	SH4(SH7750)	SH3(SH7709)	V832	V832
BCLKI	I	СКІО	СКІО	CLKOUT	CLKOUT
A3-A0	I	A5-A2	A5-A2	A5-A2	A5-A2
A11-A4	I	A13-A6	A13-A6	A13-A6	A13-A6
A19-A12	I	A21-A14	A21-A14	A21-A14	A21-A14
A21-A20	I	A23-A22	A23-A22	A23-A22	A23-A22
A22	I	A24	A24	-	-
A23	I	A25	A25	-	-
XCS	I	CSn	CSn	CSn	CSn
D15-0	10	D15-D0	D15-D0	D15-D0	D15-D0
D31-16	10	D31-D16	D31-D16	D31-D16	D31-D16
XRD	I	RD	RD	IORD/MRD	IORD/MRD
XWE0	I		WEn		IOWR/xxBEN/MWR
XWE1	I	WEn		IOWR/xxBEN/MWR	
XWE2	I				
XWE3	I				
XBS	I	BS	BS	BCYST	BCYST
XRDY	0	RDY	WAIT	READY	READY
DREQ	0	DREQ	DREQ	DMARQ	DMARQ
DRACK	I	DRAK	DRAK	DMAAK	DMAAK
DTACK	I	DACK	DACK	тс	тс
XINT	0				
MODE0-2	I				
RDY_MODE	I				
BS_MODE	I				

FUJITSU SEN			IDENTIAL		
Pin name	In/Out	MB90F334	MB90F37x	MB91F46x (16-bit)	MB91F46x (32-bit)
BCLKI	Ι			SYSCLK	SYSCLK
A3-A0	Ι			A04-A01	A04-A01
A11-A4	Ι			A12-A05	A12-A05
A19-A12	Ι			A20-A13	A20-A13
A21-A20	Ι			A22-A21	A22-A21
A22	Ι			A23	A23
A23	Ι			-	-
XCS	Ι			CSnX	CSnX
D15-0	10			D31-D16	D31-D16
D31-16	10			-	-
XRD	Ι			IORDX	IORDX
XWE0	Ι			IOWRX	IOWRX
XWE1	Ι			-	-
XWE2	Ι			-	-
XWE3	Ι			-	-
XBS	Ι			ASX	ASX
XRDY	0			RDY	RDY
DREQ	0			-	-
DRACK	Ι			-	-
DTACK	Ι			-	-
XINT	0				
MODE0-2	Ι				
RDY_MODE	Ι				
BS_MODE	I				
Pin name	In/Out	MB90F38x 16-bit non-MUX			
----------	--------	-------------------------------	--		
BCLKI	I	CLK			
A0	I	Open			
A8-A1	I	P11_7-P11_0			
A15-A9	I	P12_6-P12_0			
A20-A16	Ι	P03_3-P03_0			
A23-A21	Ι	P08_6-P08_4			
XCS	Ι	CS3			
D7-D0	Ю	P00_7-P00_0			
D15-D8	Ю	P02_7-P02_0			
XRD	Ι	RDX			
XWE0	I	WRLX			
XWE1	Ι	WRHX			
XWE2	Ι	-			
XWE3	Ι	-			
XBS	Ι	ALE / ASX			
XRDY	0	RDY			
DREQ	0	-			
DRACK	Ι	-			
DTACK	I	-			
XINT	0	-			
MODE0	Ι	GND			
MODE1	Ι	GND			
MODE2	-	VCC			
RDY_MODE		GND			
BS_MODE	I	GND			
ENDIAN	I	GND			
RDTSW	-	VCC			

Notes:

Not supported:

- ARM7
- MPC5200
- M16C

FUJITSU SEMICONDUCTOR CONFIDENTIAL 2.5 Graphics memory interface

Pin name	I/O	Description	
MD31 - MD0	I/O	Graphics memory bus data	
MA14 - MA0	Output	Graphics memory bus data	
MRAS	Output	Row address strobe	
MCAS	Output	Column address strobe	
MWE	Output	Write enable	
DQM3 - DQM0	Output	Data mask	
MCLKI	Input	Graphics memory clock input	
MCLKO	Output	Graphics memory clock output	

Graphics memory interface pins

Connect the interface to the external memory used as memory for image data. The interface can be connected to 64-/128-/256-Mbit SDRAM (16- or 32-bit length data bus) without using any external circuit.

Connect MCLKI to MCLK0.

Connect XCS of SDRAM to GND.

Connect CKE of SDRAM to VCC 3V3.

Important:

The length of each PCB trace connecting Lime's MCLKI and MCLKO pins and SDRAM's CLK pin together should be the same. Please note that there could be just one piece of SDRAM used. The recommendation should be followed in that case as well. Please see below for a graphical description.

Also, take note of the AC spec of graphics memory interface.

Lime

The length of each PCB trace connecting Lime's MCLKI and MCLKO pins and SDRAM's CLK pin together should be the same. Please note that there could be just one piece of SDRAM used. The recommendation should be followed in that case as well.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 2.6 Video output interface

Pin name	I/O	Description	
DCKI	Input	Dot clock signal input	
DISPE	Output	Display Enable	
DCLKI	Input	Display Clock Input	
DCLKO	Output	Display Clock Output	
HSYN	I/O	Horizontal sync signal output	
		Horizontal sync input <in external="" mode="" sync=""></in>	
VSYN	I/O	Vertical sync signal output	
		Vertical sync input <in external="" mode="" sync=""></in>	
CSYN	Output	Composite sync signal output	
GV	Output	Graphics/video switch	

Video Output Interface Pins

Additional setting of external circuits can generate composite video signal.

Synchronous to external video signal display can be performed.

Either mode which is synchronous to DCLKI signal or one which is synchronous to dot clock, as for normal display can be selected.

Since HSYNC and VSYNC signals are set to input state after reset, these signals must be pulled up LSI externally.

The GV signal switches graphics and video at chroma key operation. When video is selected, the "Low" level is output.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 2.7 Video capture interface

1) ITU-656 Input Signals

Table 2-3 Video Capture Interface Pins	
--	--

Pin name	I/O	Description		
(CCLK)	Input	Digital video input clock signal input This pin is multiplexed RGBCLK. Please see RGBCLK.		
VIN7-0	Input	ITU656 Digital video data input. These pins are multiplexed MD63-MD56.		
VINFID	Input	Field Input (Pullup/Pulldown)		

Inputs ITU-RBT-656 format digital video signal

2)RGB Input Signals

The signals used for video capture are not assigned on dedicated pins but share the same pins with other functions. There is a set of signals corresponding to the RGB capture modes.

There is a possibility of sharing these pins with other pins. (TBD)

Direct Input Mode

Pin name	I/O	Description		
RGBCLK	Input	Clock for RGB input.		
		This pin is multiplexed CCLK.		
RI5-0	Input	Red component value.		
GI5-0	Input	Green component value.		
BI5-0	Input	Blue component value.		
VINSYNC	Input	Vertical sync for RGB capture.		
HINSYNC	Input	Horizontal sync for RGB capture.		

Note :

- the RGB bit of VCM(video capture mode) register enables RGB input mode of video capture.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 2.8 I²C interface

Pin name	I/O	Description	
SDA	I/O	I ² C serial data line.	
SCL	I/O	I ² C serial clock line.	

Note)

Input voltage level is 3.3V. <u>Please be careful, it does not support to 5V input.</u> (The device whose output voltage is 5V is not connectable.)

2.9 GPIO interface

Pin name	I/O	Description	
GPIO4-0	I/O	General-purpose IO pin.	
		A direct value is controlled and read by the inside register. Moreover, interruption can be generated with the value of a pin.	
		These pins are pull-up in the chip.	

2.10 General purpose mode pins

GMODE 2	GMODE 1	GMODE 0	PIN Multiplex				
			Host Interface	Primary RGB output	Secondary RGB output	Video Capture	GPIO
L	L	L	32bit CPU	RGB888		Native RGB666	
L	L	Н	32bit CPU	RGB888		RBT656/601	GPIO[4:0]
L	Н	L	16bit CPU	RGB888	RGB666	RBT656/601	GPIO[2:0]
L	н	н	16bit CPU	RGB666	RGB666	Native RGB666	
Н	L	L	Reserved	Reserved	Reserved	Reserved	Reserved
н	L	Н	Reserved	Reserved	Reserved	Reserved	Reserved
Н	Н	L	Reserved	Reserved	Reserved	Reserved	Reserved
Н	Н	Н	Reserved	Reserved	Reserved	Reserved	Reserved

FUJITSU SEMICONDUCTOR CONFIDENTIAL 2.11 Clock input

Pin name	I/O	Description	
CLK	Input	Clock input signal	
S	Input	PLL reset signal	
СКМ	Input	Clock mode signal	
CLKSEL [1:0]	Input	Clock rate select signal	

Inputs source clock for internal operation clock and display dot clock. Normally, 4 Fsc (= 14.31818 MHz: NTSC) is input. An internal PLL generates the internal operation clock of 133 MHz/100 MHz and the display base clock of 400 MHz. Even if don't use an internal PLL (use BCLKI as internal clock and use DCLKI as dot clock), don't stop the PLL (Not fixed the S pin to low level).

СКМ	Clock mode				
L	Output from internal PLL selected				
Н	BLCKI clock selected				

When CKM = L, selects input clock frequency when built-in PLL used according to setting of CSL pins

CSL1	CSL0	Input clock frequency	Multiplication rate	Display reference clock
L	L	Inputs 13.5-MHz clock frequency	× 29	391.5 MHz
L	Н	Inputs 14.32-MHz clock frequency	× 28	400.96 MHz
Н	L	Inputs 17.73-MHz clock frequency	× 22	390.06 MHz
Н	Н	Inputs 33.33-MHz clock frequency	× 12	399.96

Please connect the crystal oscillator directly with the terminal CLK. CLK value to -1% of it is supported.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 2.12 Test pins

Table 2-5 Test Pins

Pin name	I/O	Description
TESTL	Input	Input 0-V power.
TESTH	Input	Input 3.3-V power.

2.13 Reset sequence

See 14.3.2 Note at power-on.

2.14 How to switch internal operating frequency

Switch the operating frequency immediately after a reset (before rewriting MMR mode register of external memory interface).

Any operating frequency can be selected from the combinations shown in Table 2-6.

Table 2-6 Frequency Setting Combinations

Clock for Rendering Engine and Memory interface
133 MHz
100 MHz

3 PROCEDURE OF THE HARDWARE INITIALIZATION

3.1 Hardware reset

1.Do the hardware reset.

2.After the hardware reset, set the CCF(Change of Frequency) register (section 12.1 Host interface registers).

In being unstable cycle after the hardware reset, keep 32 bus cycles open.

3.Set the graphics memory interface register, MMR (Memory I/F Mode Register). After setting the CCF register, take 200 us to set the MMR register. In being unstable memory access cycle, keep 32 bus cycles open.

4.Other registers, except for the CCF register and the MMR register, should be set after setting the CCF register.

In case of not using memory access, the MMR register could be set in any order after the CCF register is set.

3.2 Re-reset

- 1. Reset XRST signal.
- 2. See section x.x for registers setting after the procedure of re-reset.

3.3 Software reset

- 1. Set the value of the SRST register for re-reset.
- 2. It is not necessary to reset the CCF register and the MMR register again.

4 HOST INTERFACE

Select the host CPU by setting the MODE0 to MODE2 signals as follows:

MODE 2	MODE 1	MODE 0	CPU							
L	L	L	SH3							
L	L	Н	SH4							
L	Н	L	V832							
L	Н	Н	SPARClite							
н	L	L	General 16bit CPU with SRAM interface							
н	L	н	General 16bit CPU with address and data multiplex interface							
н	н	L	General 32bit CPU with address and data multiplex interface							
Н	Н	Н	Reserved							

Table 4-1 CPU Type Setting

FUJITSU SEMICONDUCTOR CONFIDENTIAL 4.1 Access Mode

4.1.1 SRAM interface

Data can be transferred to/from LIME using SRAM access protocol. LIME internal registers and graphics memory are all mapped to the physical address area of the host processor.

LIME uses hardware wait based on the XRDY signal, enabling the hardware wait setting of the host CPU. When using the normally not ready mode, set the software wait to "1". When using the normally ready mode, set the software wait to "2". (When using the **BS_MODE** signal as "High" level, with the normally ready mode established, set the CPU software wait to three cycles.) Switch the ready mode using the **RDY_MODE** signal.

CPU Read

The host processor reads data from internal registers and memory of LIME in double-word (32 bit) units. Valid data is output continuously while XRD and XCS are being asserted at a "Low" level after XRDY has been asserted.

CPU Write

The host CPU writes data to internal registers and memory of LIME in byte, word(16 bit) and double-word(32 bit) units.

4.1.2 FIFO interface (fixed transfer destination address)

This interface transfers display lists stored in host memory. Display list information is transferred efficiently using a single address mode DMA transfer. Data can be transferred to FIFO in relation to FIFO buffer area mapped in memory area using SRAM interface or dual address mode.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 4.2 DMA Transfer

4.2.1 Data transfer unit

DMA transfer is performed in double-word (32 bits) units or 8 double-word (32 bytes) units. Byte and word access is not supported.

Note: 8 double-word transfer is supported only in the SH4 mode.

4.2.2 Address mode

Dual address mode (mode using ACK)

DMA is performed at memory-to-memory transfer between host memory and registers mapped in memory space or graphics memory (destination). Both the host memory address and LIME is used. In the SH4 mode, the 1 double-word transfer (32 bits) and 8 double-word transfer (32 bytes) can be used.

When the CPU transfer destination address is fixed, data can also be transferred to the FIFO interface. However, in this case, even the SH4 mode supports only the 1 double-word transfer.

DREQ and DRACK pins and SRAM interface signals are used. In V832, the DREQ, DMAAK, and XTC pins and SRAM interface signals are used.

Note: The SH3 mode supports the direct address mode; it does not support the indirect address mode.

Dual address mode (mode not using ACK)

When not using the ACK signal with the dual address mode established, set bit3 at HostBase+0004h (DNA: Dual address No Ack mode) to 1.

When the ACK is not used, the DREQ signal is in the edge mode and the DREQ signal is negated per transfer and then reasserted it in the next cycle. If processing cannot be performed immediately inside LIME, the DREQ signal remains negated.

The transfer count register (DTC) of LIME is not used, so in order to end DMA transfer, write "1" to the DMA transfer stop register (DTS) from the CPU.

- Note 1: In the dual DMA mode (mode without ACK), the destination address can be used only for the FIFO.
- In DMA transfer to the graphics memory, etc., use the dual DMA mode.
- Note 2: DMA read is not supported.

Single address mode (FIFO interface)

Data is transferred between host memory (source) and FIFO (destination). Only the address output from the host memory is used, and the data is transferred to the FIFO. This mode does not support data write to the host memory. When the FIFO is full, the DMA transfer is suspended.

The 1 double-word transfer (32 bits) and the 8 double-word transfer (32 B) can be used.

DREQ, DTACK, and DRACK signal are used.

Note: The single-address mode is supported only in the SH4 mode.

4.2.3 Bus mode

LIME supports the DMA transfer cycle steal mode and burst mode according to setting of external DMA mode.

Cycle steal mode (In the V832 mode, the burst mode is called the single transfer mode.)

In the cycle steal mode, the right to use the bus is obtained or released at every data transfer of 1 unit. The DMA transfer unit can be selected from between the 1 double-word (32 bits) and 8 double-words (32 B).

Burst mode (In the V832 mode, the burst mode is called the demand transfer mode.)

When DMA transfer is started, the right to use the bus is acquired and the transfer begins. The data transfer unit can be selected from between 1 double-word (32 bits) and 8 double-words.

Note: When performing DMA transfer in the dual-address mode, a function for automatically negating DREQ is provided based on the setting of the DBMbit in DSU register.

4.2.4 DMA transfer request

Single-address mode

DMA is started when the LIME issues an external request to DMAC of the host processor.

Set the transfer count in the transfer count register of the LIME and then issue DREQ.

Fix the CPU destination address to the FIFO address.

Dual-address mode

DMA is started by two procedures: LIME issues an external request to DMAC of the host processor, or the CPU itself is started (auto request mode, etc.). In Ack use mode, set the transfer count in the transfer count register of LIME and then issue DREQ.

Note: In the Ack unused mode and the V832 mode requires no setting of the transfer count register.

4.2.5 Ending DMA transfer

SH3/SH4

When the LIME transfer count register is set to 0, DMA transfer ends and DREQ is negated.

V832

When the XTC signal from the CPU is low-asserted while the DMAAK signal to S LIME is highasserted, the end of DMA transfer is recognized and DREQ is negated.

The end of DMA transfer is detected in two ways: the DMA status register (DST) is polled, and an interrupt to end the drawing command (FD000000_H) is added to the display list and the interrupt is detected.

In the dual address mode (mode not using ACK), the DMA transfer count register (DTC) is not used, so the DMA ending cannot be determined. The DREQ signal can be negated to end DMA by writing 1 from the CPU to the DMA transfer stop register (DTS) of LIME at DMA transfer end.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 4.3 Transfer of Local Display List

This is the mode in which the LIME internal bus is used to transfer the display list stored in the graphics memory to the FIFO interface.

During transfer of the local display list, the host bus can be used for CPU read/write.

How to transfer list: Store the display list in the local memory of LIME, set the transfer source local address (LSA) and the transfer count (LCO), and then issue a request (LREQ). Whether or not the local display list is currently being transferred is checked using the local transfer status register (LSTA).

Transfer Path for Local Display List

FUJITSU SEMICONDUCTOR CONFIDENTIAL 4.4 Interrupt

LIME issues interrupt requests to the host CPU. Following shows the types of interrupt factor and they can be enabled/disabled by IMASK (Interrupt Mask Register).

Vertical synchronization detect Field synchronization detect External synchronization error detect Drawing command error Drawing command execution end GPIO pinmonitoring

4.4.1 Address Error Interrupt

Certain addresses are invalid depending on operation. For example the Burst Controller cannot access the Host Interface internal registers. If an attempt is made to do this then the access will be terminated and an Address Error Interrupt triggered.

4.5 SH3 Mode

In the SH3 mode, operation is assured under the following conditions:

Normally not ready mode

BCLK (CPU bus clock) is 50 MHz or less.

The XWAIT setup time is 9.0 ns or less.

Normally ready mode

Three cycles or more are set for the software wait.

4.6 Wait

Software wait

The software wait is a wait performed on the CPU side; this wait specifies how many cycles of the ready signal (XRDY) sampling timing is ignored.

Hardware wait

The hardware wait is a wait on the LIME side that occurs when LIME itself cannot read/write data immediately.

4.7 16-bit CPU mode

In the 16-bit CPU mode (16-bit SRAM I/F, 16-bit AD I/F), the data is accessed in the following rules.

- 1. The data is accessed in the following order, lower 16-bit of 32-bit and upper 16-bit of 32-bit continuosly.
- 2. The address is accessed ountinuosly.

If those rules are not kept, it returns an error. Refer to the related Host Interface register in details.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 5 I²C Interface Controller

5.1 Features

- Master transmission and receipt
- Slave transmission and receipt
- Arbitration
- Clock synchronization
- Detection of slave address
- Detection of general call address
- Detection of transfer direction
- Repeated generation and detection of START condition
- Detection of bus error
- Correspondence to standard-mode (100kbit/s) / high-speed-mode (400kbit/s)

FUJITSU SEMICONDUCTOR CONFIDENTIAL 5.2 Block diagram

5.2.1 Block Diagram

5.2.2 Block Function Overview

START condition / STOP condition detecting circuit

This circuit performs detection of START condition and STOP condition from the state of SDA and SCL.

START condition / STOP condition generating circuit

This circuit performs generation of START condition and STOP condition by changing the state of SDA and SCL.

Arbitration Lost detecting circuit

This circuit compares the data output to the SDA line with the data input into the SDA line at the time of data transmission, and it checks whether the data is identical. If not identical, the circuit detects this as an arbitration lost state.

Shift Clock generating circuit

This circuit performs generating timing count of the clock for serial data transfer, and output control of SCL clock by setup of a clock control register.

Comparater

Comparater compares whether the received address and the self-address appointed to be the address register is in agreement, and whether the received address is a global address.

ADR

ADR is the 7-bit register which appoints a slave address.

DAR

DAR is the 8-bit register used by serial data transfer.

BSR

BSR is the 8-bit register for the state of I2C bus etc. This register has following functions:

- detection of repeated START condition
- detection of arbitration lost
- storage of acknowledge bit
- data transfer direction
- detection of addressing
- detection of general call address
- detection of the 1st byte

BCR

BCR is the 8-bit register which performs control and interruption of I2C bus. This register has following functions:

- request / permission of interruption
- generation of START condition
- selection of master / slave
- permission to generate acknowledge

CCR

CCR is the 7-bit register used by serial data transfer. This register has following functions:

- permission of operation
- setup of a serial clock frequency
- selection of standard-mode / high-speed-mode

Noise filter

This noise filter consists of a 3 step shift register. When all three value that carried out the continuation sampling of the SCL/SDA input signals is "1", the filter output is "1". Conversely when all three value is "0", the filter output is "0". To other samplings it holds the state before 1 clock.

5.3 Example application

5.3.1 Connection Diagram

5.4 Function overview

Two bi-directional buses, serial data line (SDA) and serial clock line (SCL), carry information at I2Cbus. Scarlet I2C interface has SDA input (SDAI) and SDA output (SDAO) for SDA and is connected to SDA line via open-drain I/O cell. And this interface also has SCL input (SCLI) and SCL output (SCLO) for SCL line and is connected to SCL line via open-drain I/O cell. The wired theory is used when the interface is connected to SDA line and SCL line.

5.3.2 START condition

If "1" is written to MSS bit while the bus is free, this module will become a master mode and will generate START condition simultaneously. In a master mode, even if a bus is in a use state (BB=1), START condition can be generated again by writing "1" to SCC bit.

There are two conditions to generate START condition.

- "1" writing to MSS bit in the state where the bus is not used (MSS=0 & BB=0 & INT=0 & AL=0)

- "1" writing to SCC bit in the interruption state in a master mode (MSS=1 & BB=1 & INT=1 & AL=0)

If "1" writing is performed to MSS bit in an idol state, AL bit will be set to "1". "1" writing to MSS bit other than the above is disregarded.

5.3.3 STOP condition

If "0" is written to MSS bit in a master mode (MSS=1), this module will generate STOP condition and will become a slave mode.

There is a condition to generate STOP condition.

- "0" writing to MSS bit in the interruption state in a master mode (MSS=1 & BB=1 & INT=1 & AL=0) "0" writing to MSS bit other than the above is disregarded.

5.3.4 Addressing

In a master mode, it is set to BB="1" and TRX="0" after generation of START condition, and the contents of DAR register are output from MSB. When this module receives acknowledge after transmission of address data, the bit-0 of transmitting data (bit-0 of DRA register after transmission) is reversed and it is stored in TRX bit.

- Transfer format of slave address

A transfer format of slave address is shown below:

	MSB				LSB				
	A6	A5	A4	A3	A2	A1	A0	R/W	ACK
$\leftarrow \rightarrow$			slave add	lress					

- Map of slave address

A map of slave address is shown below:

slave address	R/W	Description
0000 000	0	General call address
0000 000	1	START byte
0000 001	Х	CBUS address
0000 010	Х	Reserved
0000 011	Х	Reserved
0000 1XX	Х	Reserved
0001 XXX 	x	Available slave address
1111 0XX	Х	10-bit slave addressing*1
1111 1XX	Х	Reserved

*1 This module does not support 10-bit slave address.

5.3.5 Synchronization of SCL

When two or more I2C devices turn into a master device almost simultaneously and drive SCL line, each devices senses the state of SCL line and adjusts the drive timing of SCL line automatically in accordance with the timing of the latest device.

5.3.6 Arbitration

When other masters have transmitted data simultaneously at the time of master transmission, arbitration takes places. When its own transmitting data is "1" and the data on SDA line is "0", the master considers that the arbitration was lost and sets "1" to AL. And if the master is going to generate START condition while the bus is in use by other master, it will consider that arbitration was lost and will set "1" to AL.

When the START condition which other masters generated is detected by the time the master actually generated START condition, even when it checked the bus is in nonuse state and wrote in MSS="1", it considers that the arbitration was lost and sets "1" to AL.

When AL bit is set to "1", a master will set MSS="0" and TRX= "0" and it will be a slave receiving mode. When the arbitration is lost (it has no royalty of a bus), a master stops a drive of SDA. However, a drive of SCL is not stopped until 1 byte transfer is completed and interruption is cleared.

5.3.7 Acknowledge

Acknowledge is transmitted from a reception side to a transmission side. At the time of data reception, acknowledge is stored in LRB bit by ACK bit.

When the acknowledge from a master reception side is not received at the time of slave transmission, it sets TRX="0" and becomes slave receiving mode. Thereby, a master can generate STOP condition when a slave opens SCL.

5.3.8 Bus error

When the following conditions are satisfied, it is judged as a bus error, and this interface will be in a stop state.

- Detection of the basic regulation violation on I2C-bus under data transfer (including ACK bit)
- Detection of STOP condition in a master mode
- Detection of the basic regulation violation on I2C-bus at the time of bus idol

SDA changed under data transmission (SCL=H). It becomes bus error.

5.3.9 Initialize

5.3.10 1-byte transfer from master to slave

5.3.11 1-byte transfer from slave to master

5.3.12 Recovery from bus error

5.4 Note

A) About a 10-bit slave address

This module does not support the 10-bit slave address. Therefore, please do not specify the slave address of from 78H to 7bH to this module. If it is specified by mistake, a normal transfer cannot be performed although acknowledge bit is returned at the time of 1 byte reception.

B) About competition of SCC, MSS, and INT bit

Competition of the following byte transfer, generation of START condition, and generation of STOP condition happens by the simultaneous writing of SCC, MSS, and INT bit. At this time the priority is as follows.

1) The following byte transfer and generation of STOP condition

If "0" is written to INT bit and "0" is written to MSS bit, priority will be given to "0" writing to MSS bit and STOP condition will be generated.

- 2) The following byte transfer and generation of START condition If "0" is written to INT bit and "1" is written to SCC bit, priority will be given to "1" writing to SCC bit and START condition will be generated.
- Generation of START condition and generation of STOP condition The simultaneous writing of "1" in SCC bit and "0" to MSS bit is prohibition.

C) About setup of S serial transfer clock

When the delay of the positive edge of SCL terminal is large or when the clock is extended by the slave device, it may become smaller than setting value (calculation value) because of generation of overhead.

6 Graphics Memory

6.1 Configuration

The LIME GDC uses local external memory (Graphics memory) for drawing and display management. The configuration of this Graphics memory is described as follows:

6.1.1 Data type

The LIME GDC handles the following types of data. Display list can be stored in the host (main) memory as well. Texture/tile pattern and text pattern can be defined by a display list as well.

Drawing Frame

This is a rectangular image data field for 2D drawing. The LIME GDC is able to have plural drawing frames and display a part of these area if it is set to be bigger than display size. The maximum size is 4096x4096 pixel in 32 pixel units. And both indirect color (8 bits / pixel) and direct color (16 bits / pixel) mode are applicable.

Display Frame

This is a rectangle picture area for display. The LIME GDC is able to set display layer up to 6 layers.

Z Buffer

Z buffer is required for eliminating hidden surfaces. In 16 bits modes, 2 bytes and in 8 bits mode, 1 byte are required per 1 pixel. This area has to be cleared before drawing.

Polygon Drawing Flag Buffer

This area is used for polygon drawing. It requires 1 bit of memory per 1 pixel and 1 x-axis line area both before and after it. Initially, this area has to be cleared.

Specially, when you use Polygon with Shadow, required area is depending on geometory view volume clip parameter. (Normally depending on drawing clipping parameter) Above "Y resolution" is "Possible_view_clipped_Max_Ydc-Possible_view_clipped_Min_Ydc+1+6". (+6 mergin must be needed)

Displaylist Buffer

The displaylist is a list of drawing commands and parameters.

Texture Pattern

This pattern is used for texture mapping. The maximum size is up to 4096 x 4096 pixels.

Cursor Pattern

This is used for hardware cursor. The data format is indirect color (8 bits / pixel) mode. And the LIME GDC is able to display two cursor of 64 x 64 pixel size.

6.1.2 Memory Mapping

A graphics memory is mapped linearly to host CPU address field. Each of these above data is able to be allocated anywhere in the Graphics memory according to the respective register setting. (However there are some restrictions of an addressing boundary depending on a data type.)

The following shows the memory map of LIME to the host CPU memory space. The address is mapped differently in SH3, SH4, V832, 16bit CPU etc.

Fig. 5.1 Memory Map

Size	Resource	Base address	(Name)
32 MB to 256 KB		0000000	
64 KB	Host interface registers	01FC0000	(HostBase)
32 KB	Display registers	01FD0000	(DisplayBase)
32 KB	Capture registers	01FD8000	(CaptureBase)
32 KB	Drawing registers	01FF0000	(DrawBase)
32 KB	Peripheral I/O registers	01FF8000	(PIOBase)
32 MB	Graphics memory	02000000	

Table 5-1 Address Space in SH4, SH3 Mode

Table 4-5 Address Space in V832, 16bit CPU Mode

Size	Resource	Base address	(Name)
16 MB to 256 KB	Graphics memory	0000000	
64 KB	Host interface registers	00FC0000	(HostBase)
32 KB	Display registers	00FD0000	(DisplayBase)
32 KB	Capture registers	00FD8000	(CaptureBase)
32 KB	Drawing registers	00FF0000	(DrawBase)
32 KB	Peripheral I/O registers	00FF8000	(PIOBase)

When the SH3 or SH4 mode is used, the register area can be moved by writing 1 to bit 0 at HostBase + 005Ch (RSW: Register location Switch). In the initial state, the register space is at the center (1FC0000) of the 64 MB space; access LIME after about 20 bus clocks after writing 1 to RSW.

Fig. 4.2 Memory Map

Table 4-6	Address	Mapping in	SH3/SH4 Mode
-----------	---------	------------	--------------

Size	Resource	Base address	(Name)
64 MB to 256 KB	Graphics memory	0000000	
64 KB	Host interface registers	03FC0000	(HostBase)
32 KB	Display registers	03FD0000	(DisplayBase)
32 KB	Capture registers	03FD8000	(CaptureBase)
32 KB	Drawing registers	03FF0000	(DrawBase)
32 KB	Peripheral I/O registers	03FF8000	(PIOBase)

6.1.3 Data Format

Direct Color (16 bits / pixel)

This data format is described RGB as each 5 bit. Bit15 is used for alpha bit of layer blending.

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	А			R					G					В		

Indirect Color (8 bits / pixel)

This data format is a color index code for looking up table (palette).

7	6	5	4	3	2	1	0
			Color	[·] Code			

Z Value(Optional function)

It is possible to use Z value as 8 bits or 16 bits. These data format are unsigned integer.

1) 16 bits mode

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Uns	igned	Integ	ler						

2) 8 bits mode

7 6 5 4 3 2 1 0 Unsigned Integer

Polygon Drawing Flag

This data format is 1 bit per 1 pixel.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
P15	P14	P13	P12	P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
P31	P30	P29	P28	P27	P26	P25	P24	P23	P22	P21	P20	P19	P18	P17	P16

Texture / Tile Pattern

It is possible to use a pattern as direct color mode (16 bits / pixel) or indirect color mode (8 bits / pixel).

1) Direct color mode (16 bits / pixel)

This data format is described RGB as each 5 bit. Bit15 is used for alpha bit of stencil or stencil blending. (Only texture mapping)

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	А			R					G					В		

2) Indirect color mode (8 bits / pixel)

This data format is a color index code for looking up table (palette).

Cursor Pattern

This data format is a color index code for looking up table (palette).

7 6 5 4 3 2 1 0 Color Code

6.2 Frame Management

6.2.1 Single Buffer

The entire or partial area of the drawing frame is assigned as a display frame. The display field is scrolled by relocating the position of the display frame. When the display frame crosses the border of the drawing frame, the other side of the drawing frame is displayed, assuming that the drawing frame is rolled over (top and left edges assumed logically connected to bottom and right edges, respectively). To avoid the affect of drawing on display, the drawing data can be transferred to the Graphics Memory in the blanking time period.

6.2.2 Double Buffer

Two drawing frames are set. While one frame is displayed, drawing is done at the other frame. Flicker-less animation can be performed by flipping these two frames back and forth. Flipping is done in the blanking time period. There are two flipping modes: automatically at every scan frame period, and by user control. The double buffer is assigned independently for the L2, L3, L4, L5 layers.

6.3 Memory Access

6.3.1 Priority of memory accessing

The priority of Graphics memory accessing is the follows:

- 1. Refresh
- 2. Video Capture
- 3. Display processing
- 4. Host CPU accessing
- 5. Drawing accessing

6.4 Connection with memory

6.4.1 Connection with memory

The memory controller of LIME GDC supports simple connection with SDRAM by setting MMR(Memory Mode Register).

If there is N(=11 to 13) address pins in SDRAM, please connect the SDRAM address(A[n]) pin to the LIME's memory address(MA[n]) pin and SDRAM bank pin to the LIME's next address(MA[N]) pin. Then please set MMR by a number and type of memory.

The follows are the connection table between LIME pin and SDRAM pin.

64M bit SDRAM(x16 bit)						
LIME pins	SDRAM pins					
MA[11:0]	A[11:0]					
MA12	BA0					
MA13	BA1					

128M bit SDRAM(x16 bit)

LIME pins	SDRAM pins
MA[11:0]	A[11:0]
MA12	BA0
MA13	BA1

256M bit SDRAM(x16 bit)

LIME pins	SDRAM pins
MA[12:0]	A[12:0]
MA13	BA0
MA14	BA1

64M bit SDRAM(x32 bit)

LIME pins	SDRAM pins
MA[10:0]	A[10:0]
MA11	BA0
MA12	BA1

128M bit SDRAM(x32 bit)

LIME pins	SDRAM pins
MA[11:0]	A[11:0]
MA12	BA0
MA13	BA1

256M bit SDRAM(x32 bit)

LIME pins	SDRAM pins			
MA[11:0]	A[11:0]			
MA12	BA0			
MA13	BA1			

512M bit SDRAM(x32 bit)

	-/		
LIME pins	SDRAM pins		
MA[12:0]	A[12:0]		
MA13	BA0		
MA14	BA1		

7 DISPLAY CONTROLLER

7.1 Overview

Display control

Window display can be performed for six layers. Window scrolling, etc., can also be performed.

Backward compatibility

Backward compatibility with previous products is supported in the four-layer display mode or in the left/right split display mode.

Video timing generator

The video display timing is generated according to the display resolution (from 320×240 to 1280x768).

Color look-up

There are two sets of color look-up tables by palette RAM for the indirect color mode (8 bits/pixel).

Cursor

Two sets of hardware cursor patterns (8 bits/pixel, 64×64 pixels each) can be used.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 7.2 Display Function

7.2.1 Layer configuration

Six-layer window display is performed. Layer overlay sequence can be set in any order. A four-layer display mode and left/right split display mode are also provided, supporting backward compatibility with previous products.

(a) Six layerd window display

(b) Four layered display for downward compatibility

Configuration of Display Layers

The correspondence between the display layers for this product and for previous products is shown below.

	vor	Coordinates of	f starting point	Widt	h/height
Layer correspondence		Window mode	Compatibility mode	Window mode	Compatibility mode
L0	С	(L0WX, L0WY)	(0, 0)	(L0WW, L0WH + 1)	(HDP + 1, VDP + 1)
L1	W	(L1WX, L1WY)	(WX, WY)	(L1WW, L1WH + 1)	(WW, WH + 1)
L2	ML	(L2WX, L2WY)	(0, 0)	(L2WW, L2WH + 1)	(HDB + 1, VDP + 1)
L3	MR	(L3WX, L3WY)	(HDB, 0)	(L3WW, L3WH + 1)	(HDP – HDB, VDP + 1)
L4	BL	(L4WX, L4WY)	(0, 0)	(L4WW, L4WH + 1)	(HDB + 1, VDP + 1)
L5	BR	(L5WX, L5WY)	(HDB, 0)	(L5WW, L5WH + 1)	(HDP – HDB, VDP + 1)

C, W, ML, MR, BL, and BR above are layers provided for compatibility to previous products. The window mode or the compatibility mode can be selected for each layer. It is possible to set window mode or compatibility mode in layer base.

However, if high resolutions are displayed, the count of layers that can be displayed simultaneously and pixel data may be restricted according to the graphics memory ability to supply data.

7.2.2 Overlay

(1) Overview

Image data for the six layers (L0 to L5) is processed as shown below.

The fundamental flow is: Palette \rightarrow Layer selection \rightarrow Blending. The palettes convert 8-bit color codes to the RGB format. The layer selector exchanges the layer overlay sequence arbitrarily. The blender performs blending using the blend coefficient defined for each layer or overlays in accordance with the transparent-color definition.

The L0 layer corresponds to the C layer for previous products and shares the palettes with the cursor. As a result, the L0 layer and cursor are overlaid before blend operation.

The L1 layer corresponds to the W layer for previous products. To implement backward compatibility with previous products, the L1 layer and lower layers are overlaid before blend operation.

The L2 to L5 layers have two paths; in one path, these layers are input to the blender separately and in the other, these layers and the L1 layer are overlaid and then are input to the blender. When performing processing using the extended mode, select the former; when performing the same processing as previous products, select the latter. It is possible to specify which one to select for each layer.
(2) Overlay mode

Image layer overlay is performed in two modes: simple priority mode, and blend mode.

In the simple priority mode, processing is performed according to the transparent color defined for each layer. When the color is a transparent color, the value of the lower layer is used as the image value for the next stage; when the color is not a transparent color, the value of the layer is used as the image value for the next stage.

 $D_{view} = D_{new}$ (when D_{new} does not match transparent color) = D_{lower} (when D_{new} matches transparent color)

When the L1 layer is in the YCbCr mode, transparent color checking is not performed for the L1 layer; processing is always performed assuming that transparent color is not used.

In the blend mode, the blend ratio "r" defined for each layer is specified using 8-bit tolerance, and the following operation is performed:

$$D_{view} = D_{new} r + D_{lower} (1 - r)$$

Blending is enabled for each layer by mode setting and a specific bit of the pixel is set to "1". For 8 bits/pixel, the MSB of RAM data enables blending; for 16 bits/pixel, the MSB of data of the relevant layer enables blending; for 24 bits/pixel, the MSB of the word enables blending.

(3) Blend coefficient layer

In the normal blend mode, the blend coefficient is fixed for each layer. However, in the blend coefficient layer mode, the L5 layer can be used as the blend coefficient layer. In this mode, the blend coefficient can be specified for each pixel, providing gradation, for example. When using this mode, set the L5 layer to 8 bits/pixel, widow display mode and extend overlay mode.

72

7.2.3 Display parameters

The display area is defined according to the following parameters. Each parameter is set independently at the respective register.

Display Parameters

Note: The actual parameter settings are little different from the above. The details, please refer "14.3.1 Interlaced mode".

HTP	Horizontal Total Pixels
HSP	Horizontal Synchronize pulse Position
HSW	Horizontal Synchronize pulse Width
HDP	Horizontal Display Period
HDB	Horizontal Display Boundary
VTR	Vertical Total Raster
VSP	Vertical Synchronize pulse Position
VSW	Vertical Synchronize pulse Width
VDP	Vertical Display Period
LnWX	Layer n Window position X
LnWY	Layer n Window position Y
LnWW	Layer n Window Width
LnWH	Layer n Window Height

When not splitting the window, set HDP to HDB and display only the left side of the window. The settings must meet the following relationship:

 $0 < HDB \le HDP < HSP < HSP + HSW + 1 < HTP$

0 < VDP < VSP < VSP + VSW + 1 < VTR

7.2.4 Display position control

The graphic image data to be displayed is located in the logical 2D coordinates space (logical graphics space) in the Graphics Memory. There are six logical graphics spaces as follows:

L0 layer

- L1 layer
- L2 layer
- L3 layer
- L4 layer
- L5 layer

The relation between the logical graphics space and display position is defined as follows:

Display Position Parameters

OA	Origin Address	Origin address of logical graphics space. Memory address of top left edge pixel in logical frame origin
W	Stride	Width of logical graphics space. Defined in 64-byte unit
Н	Height	Height of logical graphics space. Total raster (pixel) count of field
DA	Display Address	Display origin address. Top left position address of display frame origin
DX DY	Display Position	Display origin coordinates. Coordinates in logical frame space of display frame origin

MB86276 scans the logical graphics space as if the entire space is rolled over in both the horizontal and vertical directions. Using this function, if the display frame crosses the border of the logical graphics space, the part outside the border is covered with the other side of the logical graphics space, which is assumed to be connected cyclically as shown below:

Wrap Around of Display Frame

The expression of the X and Y coordinates in the frame and their corresponding linear addresses (in bytes) is shown below.

 $A(x,y) = x \times bpp/8 + 64wy$ (bpp = 8 or 16)

The origin of the displayed coordinates has to be within the frame. To be more specific, the parameters are subject to the following constraints:

 $0 \le DX < w \times 64 \times 8/bpp$ (bpp = 8 or 16) $0 \le DY < H$

DX, DY, and DA have to indicate the same point within the frame. In short, the following relationship must be satisfied.

 $DA = OA + DX \times bpp/8 + 64w \times DY$ (bpp = 8 or 16)

FUJITSU SEMICONDUCTOR CONFIDENTIAL 7.3 Display Color

Color data is displayed in the following modes:

Indirect color (8 bits/pixel)

In this mode, the index of the palette RAM is displayed. Data is converted to image data consisting of 6 bits for R, G, and B via the palette RAM and is then displayed.

Direct color (16 bits/pixel)

Each level of R, G, and B is represented using 5 bits.

Direct color (24 bits/pixel)

Each level of R, G, and B is represented using 8 bits.

YCbCr color (16 bits/pixel)

In this mode, image data is displayed with YCbCr = 4:2:2. Data is converted to image data consisting of 8 bits for R, G, and B using the operation circuit and is then displayed.

The display colors for each layer are shown below.

Layer	Compatibility mode	Extended mode
L0	Direct color (16, 24), Indirect color (P0)	Direct color (16, 24), Indirect color (P0)
L1	Direct color (16, 24), Indirect color (P1), YCbCr	Direct color (16, 24), Indirect color (P1), YCbCr
L2	Direct color (16, 24), Indirect color (P1)	Direct color (16, 24), Indirect color (P2)
L3	Direct color (16, 24), Indirect color (P1)	Direct color (16, 24), Indirect color (P3)
L4	Direct color (16, 24), Indirect color (P1)	Direct color (16, 24)
L5	Direct color (16, 24), Indirect color (P1)	Direct color (16, 24)

"Pn" stands for the corresponding palette RAM. Four palettes are used as follows:

Palette 0 (P0)

This palette corresponds to the C-layer palette for previous products. This palette is used for the L0 layer. This palette can also be used for the cursor.

Palette 1 (P1)

This palette corresponds to the M/B layer palette for previous products. In the compatibility mode, this palette is common to layers L1 to 5. In the extended mode, this palette is dedicated to the L1 layer.

Palette 2 (P2)

This palette is dedicated to the L2 layer. This palette can be used only for the extended mode.

Palette 3 (P3)

This palette is dedicated to the L3 layer. This palette can be used only for the extended mode.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 7.4 Cursor

7.4.1 Cursor display function

LIME GDC can display two hardware cursors. Each cursor is specified as 64×64 pixels, and the cursor pattern is set in the Graphics Memory. The indirect color mode (8 bits/pixel) is used and the L0 layer palette is used. However, transparent color control (handling of transparent color code and code 0) is independent of L0 layer. Blending with lower layer is not performed.

7.4.2 Cursor control

The display priority for hardware cursors is programmable. The cursor can be displayed either on upper or lower the L0 layer using this feature. A separate setting can be made for each hardware cursor. If part of a hardware cursor crosses the display frame border, the part outside the border is not shown.

Usually, cursor 0 is preferred to cursor 1. However, with cursor 1 displayed upper the L0 layer and cursor 0 displayed lower the L0 layer, the cursor 1 display is preferred to the cursor 0.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 7.5 Display Scan Control

7.5.1 Applicable display

The following table shows typical display resolutions and their synchronous signal frequencies. The pixel clock frequency is determined by setting the division rate of the display reference clock. The display reference clock is either the internal PLL (400.9 MHz at input frequency of 14.318 MHz), or the clock supplied to the DCLKI input pin. The following table gives the clock division rate used when the internal PLL is the display reference clock:

Resolution	Division rate of reference clock	Pixel frequency	Horizontal total pixel count	Horizontal frequency	Vertical total raster count	Vertical frequency
320 × 240	1/60	6.7 MHz	424	15.76 kHz	263	59.9 Hz
400 × 240	1/48	8.4 MHz	530	15.76 kHz	263	59.9 Hz
480 × 240	1/40	10.0 MHz	636	15.76 kHz	263	59.9 Hz
640 × 480	1/16	25.1 MHz	800	31.5 kHz	525	59.7 Hz
854 × 480	1/12	33.4 MHz	1062	31.3 kHz	525	59.9 Hz
800 × 600	1/10	40.1 MHz	1056	38.0 kHz	633	60.0 Hz
1024 × 768	1/6	66.8 MHz	1389	48.1 kHz	806	59.9 Hz

Resolution and Display Frequency

Pixel frequency = 14.318 MHz × 28 × reference clock division rate (when internal PLL selected) = DCLKI input frequency × reference clock division rate (when DCLKI selected)

Horizontal frequency = Pixel frequency/Horizontal total pixel count

Vertical frequency = Horizontal frequency/Vertical total raster count

7.5.2 Interlace display

LIME GDC can perform both a non-interlace display and an interlace display.

When the DCM register synchronization mode is set to interlace video (11), images in memory are output in odd and even rasters alternately to each field, and one frame (odd + even fields) forms one screen.

When the DCM register synchronization mode is set to interlace (10), images in memory are output in raster order. The same image data is output to odd fields and even fields. Consequently, the count of rasters on the screen is half of that of interlace video. However, unlike the non-interlace mode, there is a distinction between odd and even fields depending on the phase relationship between the horizontal and vertical synchronous signals.

Display Difference between Synchronization Modes

7.6 The external synchronous signal

The display scan can be performed by synchronizing horizontal/vertical synchronous signal from the external.

In selecting the external synchronization mode, LIME is sampling the HSYNC signal and displays the synchronizing the external video signal. Either the internal PLL clock or the DCLKI input signal could be selected for the sampling clock. Also, the superimposed analog output is performed by the chroma key process. The following diagram shows an example of the external synchronization circuit.

7.7 An example of the external synchronization circuit

The external synchronization mode is performed by setting the ESY bit of the DCM register. In setting the external synchronization mode, HSYNC, VSYNC, and EO pin of LIME is changed to the input mode. After that it needs to be provided the synchronous signal by using the 3 state buffer from the external. When turning off the external synchronization mode, LIME internal ESY bit needs to be switched OFF after disconnecting the synchronous input signal from the external. The buffer of the external synchronization signal must not be switched ON when the synchronous output signal of LIME is ON. Follow the previous instruction to prevent simultaneous ON from occurring.

In using the external synchronous signal with the display clock based on the internal PLL, LIME extends the clock period and fits the clock phase with the horizontal synchronous signal phase after inputting the horizontal synchronous pulse. The following caution is necessary. In case of connecting the high speed transmit signal, such as LVDS, with the digital RGB output, PLL with a built-in the high speed serial transmission is temporally unstable due to this connection. Therefore, the external synchronous signal based on the internal PLL must not be used with high speed synchronous transmit signal.

The synchronization of the horizontal direction is controlled by the following state diagram.

The finite state diagram is controlled by the horizontal resolution counter. The period of outputting the signal is assigned the Disp state. When the value of the horizontal resolution counter matches that of the HDP register, it ends to output the signal and the current state is transmitted from Disp state to Fporch state (front porch). In the Fporch state, when the value of the vertical resolution register matches that of the HSP register, the current state is transmitted to the Sync state. In this state, it waits for the horizontal synchronous signal from the external. LIME detects the negative edge of the horizontal synchronous pulse from the external and synchronizes it. In detecting the horizontal synchronous signal from the external, the current state is transmitted to the Bporch state (back porch). The horizontal resolution register does not count in the Sync state, instead the horizontal synchronous counter is incremented from zero. When the value of this counter matches the setting value of the HSW register, the current state is transmitted to the Bporch state without detecting the horizontal synchronous signal form the external transmitted to the Bporch state without detecting the horizontal synchronous signal form the current state is transmitted to the Bporch state without detecting the horizontal synchronous signal form the external transmitted to the Bporch state without detecting the horizontal synchronous signal form the external. When the value of the horizontal resolution counter matches that of the HTP register in the Bporch state, the horizontal resolution counter is reset, and also the current state is transmitted to the Disp state and it begins to display the next cluster.

The synchronization of vertical direction is controlled by the following state diagram.

The state diagram of the vertical direction is controlled by the value of the cluster counter. The period of outputting the signal is assigned the Disp state. When the value of the cluster counter matches the value of the VDP register, it ends to output the signal and the current state is transmitted from the Disp state to the Fporch state. In the Fporch state, it waits the external synchronous pulse to be asserted. In detecting the external synchronous pulse to be asserted, the current state is transmitted to the Sync state. In the Sync state, it waits for the negative edge of the external synchronous signal. In detecting the negative edge, the current state is transmitted to the Bporch state. When the value of the cluster counter matches the values of the VTR register, the cluster counter is reset, and also the current state is transmitted to the Disp state and it starts to display the next field.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 7.8 Programmable YCbCr/RGB conversion for L1-layer display

L1-layer can display video data in YCbCr format but RGB conversion coefficients are hard-wired and fixed about previous products. LIME can program RGB conversion coefficients by registers.

YCbCr data is converted by following expression.

 $R = a_{11}*Y + a_{12}*(Cb-128) + a_{13}*(Cr-128) + b_1$

 $G = a_{21}*Y + a_{22}*(Cb-128) + a_{23}*(Cr-128) + b_2$

 $B = a_{31}*Y + a_{32}*(Cb-128) + a_{33}*(Cr-128) + b_3$

a_{ij} ---- 11bit signed real (lower 8bit is fraction, two's complement)

b_i ----- 9bit signed integer (two's complement)

It is represended by matrix operation.

(R)		(Y)		where		a ₁₁	a ₁₂	a ₁₃		b ₁
G	= A	Cb-128	+ b	where	A =	a ₂₁	a ₂₂	a ₂₃	, b =	b ₂
В		Cb-128 Cr-128				a ₃₁	a ₃₂	a ₃₃	J	b₃∫

These parameters are set on registers shown bellow.

L1YCR0 (a₁₂,a₁₁), L1YCR1(b₁,a₁₃)

L1YCG0 (a₂₂,a₂₁), L1YCG1(b₂,a₂₃)

L1YCB0 (a₃₂,a₃₁), L1YCB1(b₃,a₃₃)

Same conversion with previous products is applied by initial values of these registers after reset.

The register values just after reset is as follow.

 $a_{11} = 0x12b (299/256)$, $a_{12} = 0x0$, $a_{13} = 0x198 (408/256)$

 a_{21} = 0x12b (299/256), a_{22} = 0x79c (-100/256), a_{23} = 0x72f (-209/256)

a₃₁ = 0x12b (299/256), a₃₂ = 0x204 (516/256), a₃₃ = 0x0

 $b_1 = b_2 = b_3 = 0x1f0$ (-16)

It is possible to control brightness, contrast, hue , color saturation by change these parameters.

Addition of a constant value into **b** means inclease of brightness.

Multiplication of a constant scalar value greater than one into **A** means increase of contrast.

Two dimentional rotation of Cb-128 and Cr-128 means change of hue.

Color saturation is intensity of color, relative to Y-component.

New coefficients including these changes can be got by following expression.

$$\mathbf{A} = \mathbf{c}_{1} \mathbf{A}_{0} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(t) & \sin(t) \\ 0 & -\sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{2} & 0 \\ 0 & 0 & c_{2} \end{pmatrix} = \mathbf{A}_{0} \begin{pmatrix} c_{1} & 0 & 0 \\ 0 & \cos(t)c_{1}c_{2} & \sin(t)c_{1}c_{2} \\ 0 & -\sin(t)c_{1}c_{2} & \cos(t)c_{1}c_{2} \end{pmatrix}$$
$$\mathbf{b} = \mathbf{b}_{0} + \begin{pmatrix} c_{3} \\ c_{3} \\ c_{3} \end{pmatrix}$$

 \mathbf{A}_0 , \mathbf{b}_0 : initial value

c1: contrast parameter, 1 is standard. 1.2 is stronger, for example.

c₂: color saturation parameter, 1 is standard. 0 means mono chrome image.

 c_3 : brightness parameter, 0 is standard.

t: hue rotation parameter, 0-deg is standard

Note: new a_{ij} and b_i should be clipped in valid range of value for corresponding registers.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 7.9 DCLKO shift

1) Delay

DCLKO delay function is available if internal PLL is used for DCLK. DCKD field in DCM3 register defines delay value by internal PLL clock cycle.

DCKD	delay
000000	No additional delay
000010	+2 PLL clock
000100	+3 PLL clock
000110	+4 PLL clock
:	:
111110	+33 PLL clock

2) Inversion

DCLKO inversion is also available with/without delay function. This function is effective with no relation to DCLK clock source.

CKinv-bit of DCM3 enables this function.

7.10 Syncronous register update of display

To update position related parameters without disturbing display, it is need to update synchronously with VSYNC interrupt and finish at a time.

This synchronous register update mode eases this limitation. In this mode, written parameters are hold in intermediate registers and update at once synchronously with VSYNC.

RUM-bit of DCM2 register enables this mode.

RUF-bit of DCM2 register controls start of update and shows whether update is done or not.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 7.11 Dual Display

7.11.1 Overview

This function enables to display two screens on two display devices. It is possible to control which layer is included in a screen. It is assumed here that display device "0" has screen "0" and display device "1" has screen "1".

7.11.2 Destination Control

A layer or cursor can be included in both screens or one screen. If a layer is NOT included into a screen, this layer is treated as "transparent". If all bits of a screen are set "0", then background color is displayed on the screen.

This destination control can be thought virtually as crosspoint switch shown next

MDen (multi display enable) bit of MDC(multi display control) register enables this function.

SC0en (screen"0" enable) field of MDC register defines which layers and cursors are included in screen "0".

SC1en (screeen"1" enable) field of MDC register defines which layers and cursors are included in screen "1".

bit-0 ---- L0 is included bit-1 ---- L1 is included

bit-5 ---- L5 is included

- bit-6 ---- Cursor0 is included
- bit-7 ---- Cursor1 is included

7.11.3 Output Signal Control

There are two modes to output two screens. In parallel mode, one screen is output at digital RGB1 while another screen is output at digital RGB2. In multiplex mode, two screens are multiplexed and output at digital RGB1.

(1) parallel output mode

(2) multiplex output mode

In BE (bi-edge) DCLKO mode, two ouput phases can be identified both edge of DCLKO. In SE (single-edge) DCLKO mode, two output phases cab be identified an edge of HSYNC or DE.

POM(parallel output mode) bit in DCM3 register defines which output mode is used, parallel or multiplex. POM=0 means multiplex, POM=1 means parallel, respectively.

DCKed(clock edge) bit in DCM3 register defines which DCLKO clock mode is used, BE(bi-edge) or SE(single-edge). DCKed=0

7.11.4 Output Circuit Example

There are three types of output circuit for dual display, primalry.

Parallel, Digital Multiplex(SE), Digital Multiplex(BE)

Here these three examples are described.

(1) Parallel output

Two screens are given as digital signals in this example.

(2) Multiplexed digital output with SE mode DCLKO

In this case, CPLD can be used to demultiplex two digital streams of each screen. In following example, one economical CPLD demultiplexes RGB 6bit/component video data stream.

module XC9572XL (DCKi, HSi,VSi,Di, DCK0,HS0,VS0,D0, DCK1,HS1,VS1,D1);

input DCKi,HSi,VSi;

input[18:0] Di;

output DCK0,HS0,VS0, DCK1,HS1,VS1;

output[18:0] D0,D1;

reg HS0,HS1, VS0,VS1, DCK0,DCK1;

reg[18:0] D0,D1;

always @(posedge DCKi) begin

HS0 <= HSi; HS1 <= HS0; VS0 <= VSi; VS1 <= VS0;

DCK0 <= (HS0&!HSi)? 0: !DCK0; // sync to ref edge : flip

DCK1 <= DCK0;

if(DCK0) D0 <= Di;

if(DCK1) D1 <= Di;

end

```
endmodule
```


(3) Multiplexed digital output with BE mode DCLKO

If a receiving device can select data strobe edge, it can be used to demultiplex two screens with rising and falling edge of DCLKO.

7.11.5 Display Clock and Timing

It is need to supply display clock of twice frequency for dual display function to work. VGA display uses 25MHz display clock, typically in single display mode while 50MHz display clock is need for dual display mode. The timing parameters such as HTP except scaling ratio (SC) are same.

Maximum display clock frequency determines maximum available resolution. It is 800 x 480. 66MHz DCLK clock is need for it.

7.11.6 Limitation

Two display devices has same scan rate and resolution with common sync signals.

The external sync mode can not be used in dual display mode.

90

8 Video Capture

8.1 Video Capture function

8.1.1 Input data Formats

The digital video stream of ITU RBT-656 or RGB666 format conformity is inputted (for details refer to **8.5 external video signal input conditions**).

8.1.2 Capturing of Video Signal

"LIME" becomes effective when VIE of a video capture mode register (VCM) is 1, and it is CCLK. Synchronizing with a clock, video stream data is captured from 8-bit VI pin or 20-bit RGB input pin.

8.1.3 Non-interlace Transformation

Captured video graphics can be displayed in non-interlaced format. Two modes (BOB and WEAVE) can be selected at non-interlace transformation.

- BOB Mode

In odd fields, the even-field raster generated by average interpolation are added to produce one frame. In even fields, the odd-field raster generated by average interpolation are added to produce one frame.

In order to choose BOB mode, while enable vertical interpolation in VI bit of a VCM (Video Capture Mode) register, the L1IM bit of L1M (L1-layer Mode) register is set as 0.

- WEAVE Mode

Odd and even fields are merged in the video capture buffer to produce one frame. Vertical resolutions in the WEAVE mode are higher than those in the BOB mode but raster dislocation appears at moving places.

In order to choose WEAVE mode, while disable vertical interpolation in VI bit of a VCM (Video Capture Mode) register, the L1IM bit of L1M (L1-layer Mode) register is set as 1.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 8.2 Video Buffer

8.2.1 Data Form

The video capture unit of MB86276 "LIME" accepts YUV422 video data primarily, but RGB video data is also accepted via an internal RGB preprocessor which converts RGB to YUV422.

Captured pixels are stored in YCbCr format in graphics memory, 16 bits per pixel. The video data is converted to RGB when it is displayed.

8.2.2 Synchronous Control

Writing to the graphics memory of video image data and scan for a display are performed independently. The graphics memory for video captures is controlled by the ring buffer system. It displays the frame, when the image data for one frame can be preparing on a memory. When the frame rate of a video capture differs from the frame rate of a display, the continuation display of top omission or the same frame occurs.

8.2.3 Area Allocation

Allocate an area of about 2.2 frames to the video capture buffer. The size of this area is equivalent to the size that considers the margin equivalent to the double buffer of the frame. Set the starting address and upper-limit address of the area in the CBOA/CBLA registers. Here, specify the raster start position as the upper-limit address.

To allocate n rasters as the video capture buffer, set the upper-limit value as follows:

 $CBLA = CBOA + 64 (n-2) \times CBW$

In addition, the head addresses of n+1 raster are 64n×CBW, and CBLA+2 raster becomes a buffer domain. For reduced display, allocate the buffer area of the reduced frame size.

92

8.2.4 Window Display

The captured video picture is displayed using L1 layer. The whole or a part captured picture can be displayed as the whole screen or a window.

When performing a capture display, L1 layer is set as capture synchronous mode (L1CS=1). In this mode, L1 layer display displays the newest frame in a video capture buffer. Usually, the display address used in the mode is disregarded.

The stride of L1 layer needs to be in agreement with the stride of a video capture buffer. When not in agreement, the picture distorted aslant is displayed.

The display size of L1 layer is made in agreement with the picture size after reduction of a video capture. Invalid data will be displayed if the display size of L1 layer is set up more greatly than capture picture size.

Although selection of a RGB display and a YCbCr display can be performed in L1 layer, in performing a video capture, it chooses YcbCr form (L1YC=1).

8.2.5 Interlace Display

It is possible to display the picture taken in to the video capture buffer in WEAVE mode in an interlace. A setup confirms WEAVE mode and chooses an interlace & video display with display scan.

However, when display scan is asynchronous, flicker will come out in a scene with a motion. In order to prevent this, OO (Odd Only) bit of a CBM (Capture Buffer Mode) register is set as 1.

When synchronizing display scan with a capture, a capture input and a display output can be made to correspond to 1 to 1. In this case, the difference of flicker of an input and an output is lost. Please refer to "8.8 Capture synchronous display."

8.2.6 RGB555 Mode

As an alternative method, a special RGB555-mode can be used which is dedicated for applications where grabbed pictures should be processed further. In this mode, a single buffer is used instead of a ring buffer. In addition, data is directly stored in LIME's RGB555 format in the L1-Layer (see settings of the CBM register). This makes it possible to copy rectangular areas from the L1-layer directly to the texture buffer or to other memory locations using the BitBlt function. Note that the input and output frame rate should be identical if a single buffer method is used and that the lower bits are ignored to form the RGB555 format.

93

FUJITSU SEMICONDUCTOR CONFIDENTIAL 8.3 Scaling

8.3.1 Down-scaling Function

When the CM bits of the video capture mode register (VCM) are 11, LIME reduces the video screen size. The reduction can be set independently in the vertical and horizontal scales. The reduction is set per line in the vertical direction and in 2-pixel units in the horizontal direction. The scale setting value is defined by an input/output value. It is a 16-bit fixed fraction where the integer is represented by 5 bits and the fraction is represented by 11 bits. Valid setting values are from 0800H to FFFFH. Set the vertical direction at bit 31 to bit 16 of the capture scale register (CSC) and the horizontal direction at bits 15 to bit 00. The initial value for this register is 08000800H (once). An example of the expressions for setting a reduction in the vertical and horizontal directions is shown below (note 2048 is a fixed value):

Reduction in vertical direction	576 -> 490 lines	576/490 = 1.176
	1.176×2048=2408	-> 0968н
Reduction in horizontal direction	720 -> 648 pixels	720/648 = 1.111
	1.111×2048=2275	-> 08E3H

Therefore, 096808E3_H is set in CSC.

The capture horizontal pixel register (CHP) is used to limit the number of pixels processed during scaling. It is not used to set scaling values. Clamp processing is performed on the video streaming data outside the values set in CHP. Usually, the defaults for these registers are used.

8.3.2 Up-scaling Function

LIME is able to enlarge the size of a video capture picture by the factor of 2 in both the horizontal and vertical directions. This feature can be used to realize full-screen modes of video input streams which have a resolution less than actual display size. In order to use magnify (up-scaling) mode, the horizontal and vertical factor must be less than one. Do not specify different scaling ways (reduction/enlargement) for horizontal and vertical factors ! Also initialize the following registers as follows :

Set the magnify flag in the L1-layer mode register of the display controller.

Set the picture source size (before magnification) into CMSHP and CMSVL.

Set the final picture size (after magnification) into CMDHP and CMDVL.

An example of the expressions for setting an enlargement in the vertical and horizontal directions is shown below :

If the input picture size is 480x360 and the display picture size is 640x480, then the parameters for each register are as follows.

HSCALE=(480/640)*2048=0x0600 VSCALE=(360/480)*2048=0x0600 CMSHP=0x00f0 CMSVL=0x0168 CMDHP=0x0140 CMDVL=0x01e0 L1WW=0x0280 L1WH=0x01df

Note:

- Smooth continuation operation to Down Scaling mode and Up Scaling mode cannot be performed. The picture disorder of some arises at the time of a change. This is the restrictions for Up Scaling mode and Down Scaling mode using the same interpolate circuit.

8.3.3 Flow of image processing

As for the capture image displayed on L1 layer window, image processing is performed by the following flow.

Figure 8.1 Flow of image processing

Non-interlace interpolation processing

When VI of a video capture mode register (VCM) is 0, an interlace screen is interpolated vertically using the data in the same field. A screen is doubled vertically. When VI is 1, it is not interpolated vertically.

Horizontal low-pass filter processing

As a preprocessing when scaling down a picture horizontally, a low-pass filter can be covered horizontally. Regardless of scaling up and scaling down of a picture, ON/OFF is possible for a level low path filter (LPF).

The horizontal low-pass filter consists of FIR filters of five taps. A coefficient is specified in the following register.

CHLPF_Y	Horizontal LPF Luminance element and RGB element coefficient code
CHLPF_C	Horizontal LPF chrominance element coefficient code

The coefficient is specified by the coefficient code in two bits independently by luminance (Y) signal and chrominance (Cb and Cr) signals. The coefficient is a symmetric coefficient.

CHLPF_x	K0	K1	K2	K3	K4
00	0	0	1	0	0
01	0	1/4	2/4	1/4	0
10	0	3/16	10/16	3/16	0
11	3/32	8/32	10/32	10/32	3/32

Horizontal LPF becomes turning off (through) because of the setting of the coefficient code "00".

Note:

- In the case of Native RGB mode (NRGB=1), only a setup of CHLPF_Y code becomes effective.

Down and Up scaling processing of horizontal direction

Please set bit15-00 of capture scale register (CSC) to do the down and up scaling processing of horizontal direction.

Horizontal direction is scaled down before writing in VRAM. Horizontal direction is scaled up after reading from VRAM.

The interpolation filter processing of luminance (Y) signal is done by cubic interpolation (Cubic Interpolate) method. The interpolation filter processing of chrominance (Cb and Cr) signal is done by BiLinear interpolation (BiLinear Interpolate) method. The interpolation filter processing of Native-RGB signal is done by cubic interpolation (Cubic Interpolate) method.

Vertical low-pass filter processing

The low-pass filter can be put on the vertical direction as a preprocessing when the image is scaled down to the vertical direction. Vertical low-pass filter (LPF) can be set to turning on regardless of the scaling up or down of the vertical direction.

A vertical low-pass filter is composed of the FIR filter of three taps. The coefficient is specified by the following register.

- CVLPF_Y Vertical LPF Luminance element and RGB element coefficient code
- CVLPF_C Vertical LPF chrominance element coefficient code

The coefficient is specified by the coefficient code in two bits independently by luminance (Y) signal and chrominance (Cb and Cr) signals. The coefficient is a symmetric coefficient.

CVLPF_x	K0	K1	К2	
00	0	1	0	
01	1/4	2/4	1/4	
10	3/16	10/16	3/16	
11	Prohibition of setting			

Vertical LPF becomes turning off (through) because of the setting of the coefficient code "00".

Note:

- In the case of Native RGB mode (NRGB=1), only a setup of CVLPF_Y code becomes effective.

Down and up scaling processing of Vertical direction

Please set bit31-16 of capture scale register (CSC) to do the down and up scaling processing in the vertical direction.

The vertical direction is scaled down before writing in VRAM. The vertical direction is scaled up after reading from VRAM.

The interpolation filter processing of luminance (Y) signal is done by cubic interpolation (Cubic Interpolate) method. The interpolation filter processing of chrominance (Cb and Cr) signal is done by BiLinear interpolation (BiLinear Interpolate) method. The interpolation filter processing of Native-RGB signal is done by cubic interpolation (Cubic Interpolate) method.

8.4 External video signal input conditions

8.4.1 RTB656 YUV422 input format

The ITU R.BT-656 format is widely used for digital transmission of NTSC and PAL signals. The format corresponds to YUV422. Interlaced video display signals can be captured and displayed non-interlaced with linear interpolation.

When the VIE bit of the video capture mode register (VCM) is 1, LIME is able to capture video stream data from the 8-bit VI pin in synchronization with the CCLK clock. In this mode, only a digital video stream conforming to ITU-RBT656 can be processed. For this reason, a Y,Cb,Cr 4:2:2 format to which timing reference codes are added is used. The video stream is captured according to the timing reference codes; LIME automatically supports both NTSC and PAL. However, to detect error codes, set NTSC/PAL in the VS bit of VCM. If NTSC is not set, reference the number of data in the capture data count register (CDCN). If PAL is not set, reference the number of data in the capture data counter register (CDCP). If the reference data does not match the stream data, bit 4 to bit 0 of the video capture status register (VCS) will be values other than 00000.

1) RTB656 input format VI[7:0]

Synchronous code and image data (Cb,Y,Cr,Y) are input as data of eight multiple bits synchronizing with 27MHz clock, and an valid pixel is transmitted while placed between a synchronous code named SAV and EAV.

	 4 ⊺ ►		4 T►			
VI[7:0] 8 bit	EAV	Blanking data 80,10,80,10,80,.	SAV	Multiplexed video data Cb,Y,Cr,Y,Cb,Y,Cr,Y,	EAV	
		H-BLANK 276T [288T]		ACTIVE-VIDEO 1440T [1440T]		
	•					

SAV : Beginning code of active video data (4 Byte)

EAV : End code of active video data (4 Byte)

- T : 27MHz
- []: 625/50 series (PAL)

E		NKII RIO	-		TIN REF-	/IING COE	i)F	720 PIXELS YUV4:2:2 DATA						720 PIXELS YUV4:2:2 DATA TIMING REF-CODE)E		ANKI ERIC	
	PERIOD 80 10 F						Cb0	Y0	Cr0	Y1	Cb2	Y2		Cr718	Y719	FF	00	00	EAV	80	10		

2) RTB656 synchronous code (4 Byte) format

Word	SYNC code (static)			EAV/SAV		
Bit	first	second	third	forth		
7	1	0	0	1 (static)		
6	1	0	0	F 0:first field 1:second field		
5	1	0	0	V 0:ACTIVE-VIDEO 1:VBI		
4	1	0	0	H 0:SAV 1:EAV		
3	1	0	0	P3 Guard bit		
2	1	0	0	P2 Guard bit		
1	1	0	0	P1 Guard bit		
0	1	0	0	P0 Guard bit		

3) SAV/EAV timing base signal

Bit	7	6	5	4	3	2	1	0
Function	static	F	V	Н	P3	P2	P1	P0
80	1	0	0	0	0	0	0	0
9D	1	0	0	1	1	1	0	1
AB	1	0	1	0	1	0	1	1
B6	1	0	1	1	0	1	1	0
C7	1	1	0	0	0	1	1	1
DA	1	1	0	1	1	0	1	0
EC	1	1	1	0	1	1	0	0
F1	1	1	1	1	0	0	0	1

80 : SAV code of first field valid pixel period (Active-video)

9D : EAV code of first field valid pixel period (Active-video)

AB : SAV code of first field vertical retrace line period

B6 : EAV code of first field vertical retrace line period

C7 : SAV code of second field valid pixel period (Active-video)

DA : EAV code of second field valid pixel period (Active-video)

EC : SAV code of second field vertical retrace line period

F1 : EAV code of second field vertical retrace line period

8.4.2 RGB input format

There are the two data-processing methods in RGB input video capture function. One is the method of processing with Native RGB. Another is the method of converting RGB into YUV422 by the internal RGB pre processor.

RGB input function is suitable for relatively high speed non-interlaced video signals but the deinterlacing operation is not available in this mode. The maximum input rate is 66Mpixel/sec. RGB component data is 6bit.

Note:

- In Native RGB mode, NRGB=1 is set up.

1) RGB Input Signals

The signals used for RGB video capture are not assigned dedicated terminals but share same pins with other functions.

Name	I/O	Function
RGBCLK	Input	Clock for RGB input
RI5-0	Input	Red component value
GI5-0	Input	Green component value
BI5-0	Input	Blue component value
VSYNCI	Input	Vertical sync for RGB capture
HSYNCI	Input	Horizontal sync for RGB capture

Note :

- input pins are shared with the ITU656 input and memory data bus.

- the VIS bit of the VCM (video capture mode) register selects which mode (ITU656 or RGB) is used.

2) Captured Range

Instead of embedded sync code method used in ITU656 mode, the capture range in RGB mode is specified by the following register parameters:

a) RGB input mode of capture: Set RGB666 input flag(VIS) in VCM.

In Native RGB mode, NRGB in VCM =1 is set up.

b) HSYNC Cycle: Set the number of HSYNC Cycles in RGBHC.

c) Horizontal Enable area: Set enables area start position and

enable picture size into RGBHST and RGBHEN.

d) Vertical Enable area: Set enables area start position and

enable picture size into RGBVST and RGBVEN.

The Captured area is defined according to the following parameters. Each parameter is set independently at the respective register.:

RGBHC	RGB input Hsync Cycle
RGBHST	RGB input Horizontal enable area STart position
RGBHEN	RGB input Horizontal enable area size
RGBVST	RGB input Vertical ENable area STart position
RGBVEN	RGB input Vertical ENable area size

Note: The actual parameter settings are little different from the above. The details, please refer "Explanation of Registers".

e) Convert Matrix Coefficient

In order to change the color conversion matrix, set up RGBCMY, RGBCb, RGBCr and RGBCMb.

Note:

The maximum horizontal enable area size(RGBHEN) which can be captured is 840 pixels. This is the restriction by line buffer size in a video capture module.

3) Input Operation

At the time of a RGB input, the synchronization of data is taken by VSYNC and SYNCI, which are inputted with Data RI, GI and BI.

Input rule of HSYNCI

The positive or negative edge of VINHSYNC is considered as a horizontal synchronization by register setup(HP). Input the signal of 1 or more RGBCLKs – $(840+\alpha)$ RGBCLK cycle.

Note:

The maximum horizontal enable area size(RGBHEN) which can be captured is 840 pixels. This is the restriction by line buffer size in a video capture module.

Valid data input rule to HSYNC

The valid image data input rule to HSYNC is shown.

Input data is inputted synchronizing with HSYNC of each line. (The synchronization of data needs to make a synchronization establish by HSYNC in each line unit. Since the sampling clock of image data is generated from HSYNC, it is because a clock may have jitter per line.)

Input rule of VINVSYNC

A VSYNCI signal is synchronizing with HSYNCI. Moreover, VSYNCI is sampled by HSYNCI, and it considers as a VSYNC signal. Width is made into at least one line or more although a VSYNCI signal does not need to synchronize with HSYNC at this time. The positive or negative of VSYNCI is set to VSYNC by register setup(VP).

Valid line input rule to VSYNC

The valid image data input rule to VSYNC is shown.

104

4) Conversion Operation

RGB input data is converted to YCbCr by the following matrix operation :

Y =	a11*R + a12*G + a13*B + b1		
Cb=	a21*R + a22*G + a23*B + b2	aij :	10bit signed real (lower 8bit is fraction)
Cr=	a31*R + a32*G + a33*B + b3	bi:	8bit unsigned integer

Note:

- registers can define each coefficient.

- Cb and Cr components are reduced to half after this operation to form in 4:2:2 format.

8.5 Input Video Signal Parameter Setup

A parameter setup of an input video signal changes with video formats inputted. A register to be set up is shown in the following figure.

Figure 8.2 A register required for a setup according to format

106

9 DRAWING PROCESSING

9.1 Coordinate System

9.1.1 Drawing coordinates

LIME GDC draws data in the drawing frame in the graphics memory that finally uses the drawing coordinates (device coordinates).

Drawing frame is treated as 2D coordinates with the origin at the top left as shown in the figure below. The maximum coordinates is 4096×4096 . Each drawing frame is located in the Graphics Memory by setting the address of the origin and resolution of X direction (size). Although the size of Y direction does not need to be set, Y coordinates which are max. at drawing must not be overlapped with other area. In addition, at drawing, specifying the clip frame (top left and bottom right coordinates) can prevent the drawing of images outside the clip frame.

9.1.2 Texture coordinates

Texture coordinate is a 2D coordinate system represented as S and T (S: horizontal, T: vertical). Any integer in a range of -8192 to +8191 can be used as the S and T coordinates. The texture coordinates is correlated to the 2D coordinates of a vertex. One texture pattern can be applied to up to 4096×4096 pixels. The pattern size is set in the register. When the S and T coordinates exceed the maximum pattern size, the repeat, Clamp or border color option is selected.

9.1.3 Frame buffer

For drawing, the following area must be assigned to the Graphics Memory. The frame size (count of pixels on X direction) is common for these areas.

Drawing frame

The results of drawing are stored in the graphical image data area. Both the direct and indirect color mode are applicable.

Z buffer (Optional function)

Z buffer is required for eliminating hidden surfaces. In 16 bits mode, 2 bytes and in 8 bits mode, 1 byte are required per 1 pixel.

Polygon drawing flag buffer

This area is used for polygon drawing. 1 bit is required per 1 pixel.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 9.2 Figure Drawing

9.2.1 Drawing primitives

LIME GDC is supported the rendering command that is compatible with the LIME. The following types of figure drawing primitives are compatible with the LIME.

Point

Line

Triangle

2DLine with XY setup

2DTriangle with XY setup

Polygon

9.2.2 Polygon drawing function

An irregular polygon (including concave shape) is drawn by hardware in the following manner:

1. Execute PolygonBegin command.

Initialize polygon drawing hardware.

2. Draw vertices.

Draw outline of polygon and plot all vertices to polygon draw flag buffer using 2D Triangle with XY setup.

3. Execute PolygonEnd command.

Copy shape in polygon draw flag buffer to drawing frame and fill shape with color or specified tiling pattern.

9.2.3 Drawing parameters

The triangles (Right triangle and Left triangle) are distinguished according to the locations of three vertices as follows (not used for 2D Triangle with XY setup):

The following parameters are required for drawing triangles (for 2D Triangle with XY setup, X and Y coordinates of each vertex are specified).

Note: Be careful about the positional relationship between coordinates Xs, XUs, and XLs. For example, in the above diagram, when a right-hand triangle is drawn using the parameter that shows the coordinates positional relationship Xs (upper edge start Y coordinates) > XUs or Xs (lower edge start Y coordinates) > XLs, the appropriate picture may not be drawn.

Ys	Y coordinates start position of long edge in drawing triangle
Xs	X coordinates start position of long edge corresponding to Ys
XUs	X coordinates start position of upper edge
XLs	X coordinates start position of lower edge
Zs	Z coordinates start position of long edge corresponding to Ys
Rs	R color value of long edge corresponding to Ys
Gs	G color value of long edge corresponding to Ys
Bs	B color value of long edge corresponding to Ys
Ss	S coordinate of textures of long edge corresponding to Ys
Ts	T coordinate of textures of long edge corresponding to Ys
Qs	Q perspective correction value of texture of long edge corresponding to Ys
dXdy	X DDA value of long edge direction
dXUdy	X DDA value of upper edge direction
dXLdy	X DDA value of lower edge direction
dZdy	Z DDA value of long edge direction
dRdy	R DDA value of long edge direction
dGdy	G DDA value of long edge direction
dBdy	B DDA value of long edge direction
dSdy	S DDA value of long edge direction
dTdy	T DDA value of long edge direction
dQdy	Q DDA value of long edge direction
USN	Count of spans of upper triangle
LSN	Count of spans of lower triangle
dZdx	Z DDA value of horizontal direction
dRdx	R DDA value of horizontal direction
dGdx	G DDA value of horizontal direction
dBdx	B DDA value of horizontal direction
dSdx	S DDA value of horizontal direction
dTdx	T DDA value of horizontal direction
dQdx	Q DDA value of horizontal direction

9.2.4 Anti-aliasing function

LIME GDC performs anti-aliasing to make jaggies less noticeable and smooth on line edges. To use this function at the edges of primitives, redraw the primitive edges with anti-alias lines. (The edge of line is blended with a frame buffer color at that time. Ideally please draw sequentially from father object.)

FUJITSU SEMICONDUCTOR CONFIDENTIAL 9.3 Bit Map Processing

9.3.1 BLT

A rectangular shape in pixel units can be transferred. There are following types of transfer:

- 1. Transfer from host CPU to Drawing frame memory
- 2. Transfer between Graphics Memories including Drawing frame

Concerning 1 and 2 above, 2-term logic operation is performed between source and destination data and its result can be stored.

Setting a transparent color enables a drawing of a specific pixel with transmission.

If part of the source and destination of the BLT field are physically overlapped in the display frame, the start address (from which vertex the BLT field to be transferred) must be set correctly.

9.3.2 Pattern data format

LIME GDC can handle three bit map data formats: indirect color mode (8 bits/pixel), direct color mode (16 bits/pixel), and binary bit map (1 bit/pixel).

The binary bit map is used for character/font patterns, where foreground color is used for bitmap = 1 pixel, and background color (background color can be set to be transparent by setting) is applied for bitmap = 0 pixels.

112

FUJITSU SEMICONDUCTOR CONFIDENTIAL 9.4 Texture Mapping

9.4.1 Texture size

LIME GDC reads texel corresponding to the specified texture coordinates (S, T), and draws that data at the correlated pixel position of the polygon. For the S and T coordinates, the selectable texture data size is any value in the range from 4 to 4096 pixels represented as an exponent of 2.

9.4.2 Texture color

Drawing of 8-/16-bit direct color is supported for the texture pattern. For drawing 8-bit direct color, only point sampling can be specified for texture interpolation; only de-curl can be specified for the blend mode.

9.4.3 Texture Wrapping

If a negative or larger than the specified texture pattern size is specified as the texture coordinates (S, T), according to the setting, one of these options (repeat, Clamp or border) is selected for the 'out-of-range' texture mapping. The mapping image for each case is shown below:

Repeat

This just simply masks the upper bits of the applied (S, T) coordinates. When the texture pattern size is 64×64 pixels, the lower 6 bits of the integer part of (S, T) coordinates are used for S and T coordinates.

Clamp

When the applied (S, T) coordinates is either negative or larger than the specified texture pattern size, Clamp the (S, T) coordinate as follows instead of texture:

S < 0	S = 0
S > Texture X size – 1	S = Texture X size – 1

Border

When the applied (S, T) coordinate is either negative or larger than the specified texture pattern size, the outside of the specified texture pattern is rendered in the 'border' color.

9.4.4 Filtering

LIME GDC supports two texture filtering modes: point filtering, and bi-linear filtering.

Point filtering

This mode uses the texture pixel specified by the (S, T) coordinates as they are for drawing. The nearest pixel in the texture pattern is chosen according to the calculated (S, T) coordinates.

Bi-linear filtering

The four nearest pixels specified with (S, T) coordinate are blended according to the distance from specified point and used in drawing.

9.4.5 8.4.5 Texture blending

LIME GDC supports the following three blend modes for texture mapping:

Decal

This mode displays the selected texture pixel color regardless of the polygon color.

Modulate

This mode multiplies the native polygon color (C_P) and selected texture pixel color (C_T) and the result is used for drawing. Rendering color is calculated as follows (C_O):

$$C_0 = C_T \times C_P$$

Stencil

This mode selects the display color from the texture color with MSB as a flag.

MSB = 1: Texture color MSB = 0: Polygon color

114

FUJITSU SEMICONDUCTOR CONFIDENTIAL 9.5 Rendering

9.5.1 Tiling

Tiling reads the pixel color from the correlated tiling pattern and maps it onto the polygon. The tiling determines the pixel on the pattern read by pixel coordinates to be drawn, irrespective of position and size of primitive. Since the tiling pattern is stored in the texture memory, this function and texture mapping cannot be used at the same time. Also, the tiling pattern size is limited to within 64×64 pixels. (at 16-bit color)

Example of Tiling

9.5.2 Alpha blending

Alpha blending blends the drawn in frame buffer to-be-drawn pixel or pixel already according to the alpha value set in the alpha register. This function cannot be used simultaneously with logic operation drawing. It can be used only when the direct color mode (16 bits/pixel) is used. The blended color C is calculated as shown below when the color of the pixel to be drawn is C_P , the color of frame buffer is C_F , and the alpha value is A:

$$C = C_P \times A + (1-A) \times C_F$$

The alpha value is specified as 8-bit data. 00h means alpha value 0% and FFh means alpha value 100%. When the texture mapping function is enabled, the following blending modes can be selected:

Normal

Blends post texture mapping color with frame buffer color

Stencil

Uses MSB of texel color for ON/OFF control:

MSB = 1: Texel color

MSB = 0: Frame buffer color

Stencil alpha

Uses MSB of texel color for α /OFF control:

MSB = 1: Alpha blend texel color and current frame buffer color

MSB = 0: Frame buffer color

Note: MSB of frame buffer is drawn MSB of texel in both stencil and stencil alpha mode.

Therefore in case MSB of texel is MSB=0, a color of frame buffer is frame buffer, but MSB of frame buffer is set to 0.

9.5.3 Logic operation

This mode executes a logic operation between the pixel to be drawn and the one already drawn in frame buffer and its result is drawn. Alpha blending cannot be used when this function is specified.

Туре	ID	Operation	Туре	ID	Operation
CLEAR	0000	0	AND	0001	S&D
COPY	0011	S	OR	0111	SID
NOP	0101	D	NAND	1110	! (S & D)
SET	1111	1	NOR	1000	! (S D)
COPY INVERTED	1100	!S	XOR	0110	S xor D
INVERT	1010	!D	EQUIV	1001	! (S xor D)
AND REVERSE	0010	S & !D	AND INVERTED	0100	!S & D
OR REVERSE	1011	S !D	OR INVERTED	1101	!S D

9.5.4 Hidden plane management (Optional function)

LIME GDC supports the Z buffer for hidden plane management.

This function compares the Z value of a new pixel to be drawn and the existing Z value in the Z buffer. Display/not display is switched according to the Z-compare mode setting. Define the Z-buffer access options in the ZWRITEMASK mode.

The Z compare operation type is determined by the Z compare mode.

Either 16 or 8 bits can be selected for the Z-value.

ZWRITEMASK	1	Compare Z values, no Z value write overwrite
ZWRITEWASK	0	Compare Z values, Z value write

Z Compare mode	Code	Condition
NEVER	000	Never draw
ALWAYS	001	Always draw
LESS	010	Draw if pixel Z value < current Z buffer value
LEQUAL	011 Draw if pixel Z value ≤ current Z buffer value	
EQUAL	100	Draw if pixel Z value = current Z buffer value
GEQUAL	101	Draw if pixel Z value ≥ current Z buffer value
GREATER	110	Draw if pixel Z value > current Z buffer value
NOTEQUAL	111	Draw if pixel Z value ! = current Z buffer value

FUJITSU SEMICONDUCTOR CONFIDENTIAL 9.6 Drawing Attributes

9.6.1 Line drawing attributes

In drawing lines, the following attributes apply:

Line Drawing Attributes

Drawing Attribute	Description
Line width	Line width selectable in range of 1 to 32 pixels
Broken line	Specify broken line pattern in 32-bit data
Anti-alias	Line edge smoothed when anti-aliasing enabled

9.6.2 Triangle drawing attributes

In drawing triangles, the following attributes apply (these attributes are disabled in 2DTriangle with XY setup). Texture mapping and tiling have separated texture attributes:

Triangle Drawing Attributes

Drawing Attribute	Description
Shading	Gouraud shading or flat shading selectable
Alpha blending	Set alpha blending enable/disable per polygon
Alpha blending coefficient	Set color blending ratio of alpha blending

9.6.3 Texture attributes

In texture mapping, the following attributes apply:

Texture Attributes

Drawing Attribute	Description
Texture mode	Select either texture mapping or tiling
Texture filter	Select either point sampling or bi-linear filtering
Texture coordinates correction	Select either linear or perspective correction
Texture wrap	Select either repeat or Clamp of texture pattern
Texture blend mode	Select either decal or modulate

9.6.4 BLT attributes

In BLT drawing, the following attributes apply:

BLT Attributes

Drawing Attribute	Description
Logic operation mode	Specify two source logic operation mode
Transparency mode	Set transparent copy mode and transparent color
Alpha map mode	Blend a color according to alpha map

9.6.5 Character pattern drawing attributes

Character Pattern Drawing

Drawing Attribute	Description	
Character pattern enlarge/shrink	Vertical and Horizontal \times 2, Horizontal \times 2, Vertical and Horizontal \times 1/2, Horizontal \times 1/2	
Character pattern color	Set character color and background color	
Transparency/non-transparency	Set background color to transparency/non-transparency	

FUJITSU SEMICONDUCTOR CONFIDENTIAL 10 DISPLAY LIST

10.1 Overview

Display list is a set of display list commands, parameters and pattern data. All display list commands stored in a display list are executed consequently.

The display list is transferred to the display list FIFO by the following method:

Transfer from graphics memory to display FIFO by register setting

Display List

10.1.1 Header format

The format of the display list header is shown below.

Format	31 : : : : : : : : : : : : : : : : : : :	23: : : : : : : : : : : : : : : : : : :	15: : : : : : : : : :	: : :	: :0
Format 1	Туре	Reserved	Reserved		
Format 2	Туре	Count	Address		
Format 3	Туре	Reserved	Reserved		Vertex
Format 4	Туре	Reserved	Reserved	Flag	Vertex
Format 5	Туре	Command	Reserved		
Format 6	Туре	Command	Count		
Format 7	Туре	Command	Reserved		Vertex
Format 8	Туре	Command	Reserved	Flag	Vertex
Format 9	Туре	Reserved	Reserved Flag		ag
Format 10	Туре	Reserved	Count		
Format 11	Туре	Reserved	Reserved		
Format T	Count				

Format List

Description of Each Field

Туре	Display list type
Command	Command
Count	Count of data excluding header
Address	Address value used at data transfer
Vertex	Vertex number
Flag	Attribute flag peculiar to display list command

Vertex Number Specified in Vertex Code

Vertex	Vertex number (Line)	Vertex number (Triangle)
00	V0	V0
01	V1	V1
10	Setting prohibited	V2
11	Setting prohibited	Setting prohibited

FUJITSU SEMICONDUCTOR CONFIDENTIAL 10.2 Rendering Command

10.2.1 Command list

The following table lists LIME GDC rendering commands and their command codes.

Туре	Command	Description
Nop	—	No operation
Interrupt	_	Interrupt request to host CPU
Sync	—	Synchronization with events
SetRegister	_	Sets data to register
SetVertex2i	Normal	Sets data to 2D Triangle with XY setup vertex register
Servertexzi	PolygonBegin	Initializes border rectangle calculation of multiple vertices random shape
Draw	PolygonEnd	Clears polygon flag after drawing polygon
Diaw	Flush_FB/Z	Flushes drawing pipelines
DrawPixel	Pixel	Draws point
DrawPixelZ	PixelZ	Draws point with Z
	Xvector	Draws line (principal axis X)
D	Yvector	Draws line (principal axis Y)
DrawLine	AntiXvector	Draws line with anti-alias option (principal axis X)
	AntiYvector	Draws line with anti-alias option (principal axis Y)
DrawLine2i	ZeroVector	Draws 2D Line with XY setup (with vertex 0 as starting point)
DrawLine2iP	OneVector	Draws 2D Line with XY setup (with vertex 1 as starting point)
	TrapRight	Draws right triangle
DrawTrap	TrapLeft	Draws left triangle
DrawVertex2i	TriangleFan	Draws 2D Triangle with XY setup
DrawVertex2iP	FlagTriangleFan	Draws 2D Triangle with XY setup for multiple vertices random shape
	BltFill	Draws rectangle with single color
DrawRectP	ClearPolyFlag	Clears polygon flag buffer
	BltDraw	Draws Blt (16-bit)
DrawBitmapP	Bitmap	Draws binary bit map (character)
DrawBitmapLargeP	BltDraw	Draws Blt (32-bit)
	TopLeft	Blt transfer from top left coordinates
BltCopyP	TopRight	Blt transfer from top right coordinates
BltCopy-	BottomLeft	Blt transfer from bottom left coordinates
AlternateP	BottomRight	Blt transfer from bottom right coordinates
	LoadTexture	Loads texture pattern
LoadTextureP	LoadTILE	Loads tile pattern
	LoadTexture	Loads texture pattern from local memory
BltTextureP	LoadTILE	Loads tile pattern from local memory
BltCopyAlt- AlphaBlendP	_	Alpha blending is supported (see the alpha map). BltCopyAlternateP

Туре	Code
DrawPixel	0000_0000
DrawPixelZ	0000_0001
DrawLine	0000_0010
DrawLine2i	0000_0011
DrawLine2iP	0000_0100
DrawTrap	0000_0101
DrawVertex2i	0000_0110
DrawVertex2iP	0000_0111
DrawRectP	0000_1001
DrawBitmapP	0000_1011
BitCopyP	0000_1101
BitCopyAlternateP	0000_1111
LoadTextureP	0001_0001
BltTextureP	0001_0011
BltCopyAltAlphaBlendP	0001_1111
SetVertex2i	0111_0000
SetVertex2iP	0111_0001
Draw	1111_0000
SetRegister	1111_0001
Sync	1111_1100
Interrupt	1111_1101
Nop	1111_1111

Type Code Table

Command	Code
Pixel	000_00000
PixelZ	000_00001
Xvector	001_00000
Yvector	001_00001
XvectorNoEnd	001_00010
YvectorNoEnd	001_00011
XvectorBlpClear	001_00100
YvectorBlpClear	001_00101
XvectorNoEndBlpClear	001_00110
YvectorNoEndBlpClear	001_00111
AntiXvector	001_01000
AntiYvector	001_01001
AntiXvectorNoEnd	001_01010
AntiYvectorNoEnd	001_01011
AntiXvectorBlpClear	001_01100
AntiYvectorBlpClear	001_01101
AntiXvectorNoEndBlpClear	001_01110
AntiYvectorNoEndBlpClear	001_01111
ZeroVector	001_10000
Onevector	001_10001
ZeroVectorNoEnd	001_10010
OnevectorNoEnd	001_10011
ZeroVectorBlpClear	001_10100
OnevectorBlpClear	001_10101
ZeroVectorNoEndBlpClear	001_10110
OnevectorNoEndBlpClear	001_10111
AntiZeroVector	001_11000
AntiOnevector	001_11001
AntiZeroVectorNoEnd	001_11010
AntiOnevectorNoEnd	001_11011
AntiZeroVectorBlpClear	001_11100
AntiOnevectorBlpClear	001_11101
AntiZeroVectorNoEndBlpClear	001_11110
AntiOnevectorNoEndBlpClear	001_11111

Command Code Table (1)

Command	Code
BltFill	010_00001
BltDraw	010_00010
Bitmap	010_00011
TopLeft	010_00100
TopRight	010_00101
BottomLeft	010_00110
BottomRight	010_00111
LoadTexture	010_01000
LoadTILE	010_01001
TrapRight	011_00000
TrapLeft	011_00001
TriangleFan	011_00010
FlagTriangleFan	011_00011
Flush_FB	110_00001
Reserved	110_00010
PolygonBegin	111_00000
PolygonEnd	111_00001
ClearPolyFlag	111_00010
Normal	111_1111

Command Code Table (2)

124

10.2.2 Details of rendering commands

All parameters belonging to their command are stored in relevant registers. The definition of each parameter is explained in the section of each command.

Nop (Format1)

No operation

Interrupt (Format1)

-	31	24 23	16 15	0
	Interrupt	Reserved	Reserved	

The *Interrupt* command generates interrupt request to host CPU.

Sync (Format9)

31 2	24_23 16	15	4	0
Sleep	Reserved	Reserved	flag	

The *Sync* command suspends all subsequent display list processing until event set in flag detected. Flag:

Bit number	4	3	2	1	0
Bit field name	Reserved	Reserved	Reserved	Reserved	VBLANK

Bit 0 VBLANK

VBLANK Synchronization

0 No operation

1 Wait for VSYNC detection

SetRegister (Format2)

31	24	23 16	15 0
SetR	egister	Count	Address
	(Val 0)		al 0)
(Val 1)		al 1)	
		(Va	al n)

The SetRegister command sets data to sequential registers.

Count: Data word count (in double-word unit)

Address: Register address

Set the value of the address for *SetRegister* given in the register list. When transferring two or more data, set the starting register address.

SetVertex2i (Format8)

	31 2	4 23 16	15	4 3 2	1 0
	SetVertex2i	Command	Reserved	flag	vertex
	Xdc				
Γ		Ydc			

The **SetVertex2i** command sets vertices data for 2D Line with XY setup or 2D Triangle with XY setup to registers.

Commands:

Flag:

Normal	Sets vertex data (X, Y).
PolygonBegin	Starts calculation of circumscribed rectangle for random shape to be drawn. Calculate vertices of rectangle including all vertices of random shape defined between PolygonBegin and PolygonEnd .
Not used	

SetVertex2iP (Format8)

31	. ,	24 23	16 15		4 3 2	1 0
	SetVertex2i	Command		Reserved	flag	vertex
		Ydc		Xdc		

The **SetVertex2iP** command sets vertices data for 2D Line with XY setup or 2D Triangle with XY setup to registers.

Only the integer (packed format) can be used to specify these vertices.

Commands:

Normal	Sets vertices data.
PolygonBegin	Starts calculation of circumscribed rectangle of random shape to be drawn. Calculate vertices of rectangle including all vertices of random shape defined between PolygonBegin and PolygonEnd .

Flag: Not used

Draw (Format5)

31 24	23 16	15 ()
Draw	Command	Reserved	

The *Draw* command executes drawing command. All parameters required for drawing command execution must be set at their appropriate registers.

Commands:

PolygonEnd	Draws polygon end. Fills random shape with color according to flags generated by <i>FlagTriangleFan</i> command and information of circumscribed rectangle generated by <i>PolygonBegin</i> command.
Flush_FB	Flushes drawing data in the drawing pipeline into the graphics memory. Place this command at the end of the display list.
Flush_Z	Flushes Z value data in the drawing pipeline into the graphics memory. When using the Z buffer, place this command together with the <i>Flush_FB</i> command at the end of the display list.

DrawPixel (Format5)

The *DrawPixel* command draws pixel.

Command:

Draws pixel without Z value.

DrawPixelZ (Format5)

Pixel

31	24	23 16	0 15 0
	DrawPixel	Command	Reserved
	P	Xs	
	P'	Ys	
	P.	Zs	

The *DrawPixelZ* command draws pixel with Z value.

Command:

PixelZ

Draws pixel with Z value.

DrawLine (Format5)

31	24	23 16	15	0
	DrawLine	Command	Reserved	
		L	PN	
		L	Xs	
LXde		(de		
		L	Ys	
		Ľ	⁄de	

The *DrawLine* command draws line. It starts drawing after setting all parameters at line draw registers.

Commands:

Xvector	Draws line (principal axis X).
Yvector	Draws line (principal axis Y).
XvectorNoEnd	Draws line (principal axis X, and without end point drawing).
YvectorNoEnd	Draws line (principal axis Y, and without end point drawing).
XvectorBlpClear	Draws line (principal axis X, and prior to drawing, broken line pattern reference position cleared).
YvectorBlpClear	Draws line (principal axis Y, and prior to drawing, broken line pattern reference position cleared).
XvectorNoEndBlpClear	Draws line (principal axis X, without end point drawing and prior to drawing, broken line pattern reference position cleared).
YvectorNoEndBlpClear	Draws line (principal axis Y, without end point drawing and prior to drawing, broken line pattern reference position cleared).
AntiXvector	Draws anti-alias line (principal axis X).
AntiYvector	Draws anti-alias line (principal axis Y).
AntiXvectorNoEnd	Draws anti-alias line (principal axis X, and without end point drawing).
AntiYvectorNoEnd	Draws anti-alias line (principal axis Y, and without end point drawing).
AntiXvectorBlpClear	Draws anti-alias line (principal axis X and prior to drawing, broken line pattern reference position cleared).
AntiYvectorBlpClear	Draws anti-alias line (principal axis Y and prior to drawing, broken line pattern reference position cleared).
AntiXvectorNoEndBlpClear	Draws anti-alias line (principal axis X, without end point drawing and prior to drawing, broken line pattern reference position cleared).
AntiYvectorNoEndBlpClear	Draws anti-alias line (principal axis Y, without end point drawing and prior to drawing, broken line pattern reference position cleared).

DrawLine2i (Format7)

31	24_23 16	15	0
DrawLine2i	Command	Reserved	vertex
	LFXs	0	
	LFYs	0	

The *DrawLine2i* command draws 2DLine with XY setup. It starts drawing after setting parameters at the 2DLine with XY setup drawing registers. Integer data can only be used for coordinates.

Commands:

-		
	ZeroVector	Draws line from vertex 0 to vertex 1.
	OneVector	Draws line from vertex 1 to vertex 0.
	ZeroVectorNoEnd	Draws line from vertex 0 to vertex 1 (without drawing end point).
	OneVectorNoEnd	Draws line from vertex 1 to vertex 0 (without drawing end point).
	ZeroVectorBlpClear	Draws line from vertex 0 to vertex 1 (principal axis X, and prior to drawing, broken line pattern reference position cleared).
	OneVectorBlpClear	Draws line from vertex 1 to vertex 0 (principal axis Y, and prior to drawing, broken line pattern reference position cleared).
	ZeroVectorNoEndBlpClear	Draws line from vertex 0 to vertex 1 (principal axis X, without end point drawing and prior to drawing, broken line pattern reference position cleared).
	OneVectorNoEndBlpClear	Draws line from vertex 1 to vertex 0 (principal axis Y, without end point drawing and prior to drawing, broken line pattern reference position cleared).
	AntiZeroVector	Draws anti-alias line from vertex 0 to vertex 1.
	AntiOneVector	Draws anti-alias line from vertex 1 to vertex 0.
	AntiZeroVectorNoEnd	Draws anti-alias line from vertex 0 to vertex 1 (without end point).
	AntiOneVectorNoEnd	Draws anti-alias line from vertex 1 to vertex 0 (without end point).
	AntiZeroVectorBlpClear	Draws anti-alias line from vertex 0 to vertex 1 (principal axis X and prior to drawing, broken line pattern reference position cleared).
	AntiOneVectorBlpClear	Draws anti-alias line from vertex 1 to vertex 0 (principal axis Y and prior to drawing, broken line pattern reference position cleared).
	AntiZeroVectorNoEndBlpClear	Draws anti-alias line from vertex 0 to vertex 1 (principal axis X, without end point drawing and prior to drawing, broken line pattern reference position cleared).
	AntiOneVectorNoEndBlpClear	Draws anti-alias line from vertex 1 to vertex 0 (principal axis Y, without end point drawing and prior to drawing, broken line pattern reference position cleared).

DrawLine2iP (Format7)

31 24	23 16	15	0
DrawLine2iP	Command	Reserved	vertex
LF	Ys	LFXs	

The *DrawLine2iP* command draws high-speed 2DLine. It starts drawing after setting parameters at high-speed 2DLine drawing registers. Only packed integer data can be used for coordinates.

0 1	0 0	51 0		
Commands:				
Ze	roVector	Draws line from vertex 0 to vertex 1.		
On	neVector	Draws line from vertex 1 to vertex 0.		
Ze	roVectorNoEnd	Draws line from vertex 0 to vertex 1 (without drawing end point).		
On	neVectorNoEnd	Draws line from vertex 1 to vertex 0 (without drawing end point).		
Ze	roVectorBlpClear	Draws line from vertex 0 to vertex 1 (principal axis X, and prior to drawing, broken line pattern reference position cleared).		
On	neVectorBlpClear	Draws line from vertex 1 to vertex 0 (principal axis Y, and prior to drawing, broken line pattern reference position cleared).		
Ze	roVectorNoEndBlpClear	Draws line from vertex 0 to vertex 1 (principal axis X, without end point drawing and prior to drawing, broken line pattern reference position cleared).		
On	neVectorNoEndBlpClear	Draws line from vertex 1 to vertex 0 (principal axis Y, without end point drawing and prior to drawing, broken line pattern reference position cleared).		
An	tiZeroVector	Draws anti-alias line from vertex 0 to vertex 1.		
An	tiOneVector	Draws anti-alias line from vertex 1 to vertex 0.		
An	tiZeroVectorNoEnd	Draws anti-alias line from vertex 0 to vertex 1 (without end point).		
An	tiOneVectorNoEnd	Draws anti-alias line from vertex 1 to vertex 0 (without end point).		
An	tiZeroVectorBlpClear	Draws anti-alias line from vertex 0 to vertex 1 (principal axis X and prior to drawing, broken line pattern reference position cleared).		
An	tiOneVectorBlpClear	Draws anti-alias line from vertex 1 to vertex 0 (principal axis Y and prior to drawing, broken line pattern reference position cleared).		
An	tiZeroVectorNoEndBlpClear	Draws anti-alias line from vertex 0 to vertex 1 (principal axis X, without end point drawing and prior to drawing, broken line pattern reference position cleared).		
An	tiOneVectorNoEndBlpClear	Draws anti-alias line from vertex 1 to vertex 0 (principal axis Y, without end point drawing and prior to drawing, broken line pattern reference position cleared).		

DrawTrap (Format5)

31	24	23 16	15 0
Dra	wTrap	Command	Reserved
	Y	′s	0
		Х	S
	DXdy		
	XUs		
	DXUdy		
	XLs		
	DXLdy		
	U	SN	0
	LSN		0

The *DrawTrap* command draws Triangle. It starts drawing after setting parameters at the Triangle Drawing registers (coordinates).

Commands:

TrapRight	Draws right triangle.
TrapLeft	Draws left triangle.

DrawVertex2i (Format7)

31	1 24	23 16	15	0
	DrawVertex2i	Command	Reserved	vertex
	Xdc		0	
	Ydc		0	

The DrawVertex2i command draws 2D Triangle with XY setup

It starts triangle drawing after setting parameters at 2D Triangle Drawing registers.

Commands:

TriangleFan	Draws 2D Triangle with XY setup.
FlagTriangleFan	Draws 2D Triangle with XY setup for polygon drawing in the flag buffer.

DrawVertex2iP (Format7)

31	24 23 16	3 15	0
DrawVertex2iP	Command	Reserved	vertex
	Ydc	Xdc	

The DrawVertex2iP command draws 2D Triangle with XY setup.

It starts drawing after setting parameters at 2D Triangle with XY setup Drawing registers

Only the packed integer format can be used for vertex coordinates.

Commands:

TriangleFan Draw 2D Triangle with XY setup.

FlagTriangleFan Draws 2D Triangle with XY setup for polygon drawing in the flag buffer.

DrawRectP (Format5)

31	24	23 16	15 0
I	DrawRectP	Command	Reserved
RYs		ís	RXs
RsizeY		zeY	RsizeX

The **DrawRectP** command fills rectangle. The rectangle is filled with the current color after setting parameters at the rectangle registers. Please set XRES(X resolution) to in 8 byte units when using this command.

Only the BitBlt command allows XRES to be in 8-byte units or boundary. For all other purposes, XRES has to be in 64-byte units. Therefore, unless BitBlt is the only rendering engine function being used, XRES must be set in 64-byte units. In general, it is also recommended for XRES to be in 64-byte units.

Commands:

BltFill	Fills rectangle with current color (single).
ClearPolyFlag	Fills polygon drawing flag buffer area with 0. The size of drawing frame is defined in RsizeX,Y.
	Must set RXs[3:0] and RsizeX[3:0] as 0000. (16pixel aligned)
	Drawing clipping is not work for this command.

DrawBitmapP (Format6)

31 24	23 16	15 0		
DrawBitmapP	Command	Count		
R	Ys	RXs		
Rs	izeY	RsizeX		
	(Patte	ern 0)		
(Pattern 1)				
	(Pattern n)			

The **DrawBitmapP** command draws rectangle patterns. Please set XRES(X resolution) to in 8 byte units when using this command.

Commands:

BltDraw

Draws rectangle of 8 bits/pixel or 16 bits/pixel.

DrawBitmap Draws binary bitmap character pattern. Bit 0 is drawn in transparent or background color, and bit 1 is drawn in foreground color.

DrawBitmapLargeP (Format11)

31 24	23 16	15 0			
DrawBitmapLargeP	Command	Reserved			
	Count				
R	ys	Rxs			
Rsiz	zeY	RsizeX			
(Pattern 0)					
(Pattern 1)					
	(Pattern n)				

The *DrawBitmapP* command draws rectangle patterns.

The parameter(count field) could be used up to 32-bit(*1) unlike DrawBitmapP.

(*1: The data format of counter field is signed long. Thus actually it is possible to use up to 31-bit.)

Please set XRES(X resolution) to in 8 byte units when using this command.

Commands:

BltDraw

Draws rectangle of 8 bits/pixel or 16 bits/pixel.

BltCopyP (Format5)

31	24	23 16	0
	BltCopyP	Command	Reserved
SRYs		:Ys	SRXs
DRYs		?Ys	DRXs
BRsizeY		izeY	BRsizeX

The **BltCopyP** command copies rectangle pattern within drawing frame. Please set XRES(X resolution) to in 8 byte units when using this command.

Only the BitBlt command allows XRES to be in 8-byte units or boundary. For all other purposes, XRES has to be in 64-byte units. Therefore, unless BitBlt is the only rendering engine function being used, XRES must be set in 64-byte units. In general, it is also recommended for XRES to be in 64-byte units.

Commands:

TopLeft	Starts BitBlt transfer from top left coordinates.
TopRight	Starts BitBlt transfer from top right coordinates.
BottomLeft	Starts BitBlt transfer from bottom left coordinates.
BottomRight	Starts BitBlt transfer from bottom right coordinates.

BltCopyAlternateP (Format5)

23 16	15 0	
Command	Reserved	
SADDR		
SSt	ride	
Ys	SRXs	
DAE	DDR	
DSt	ride	
Ys	DRXs	
izeY	BRsizeX	
	Command SAE SSt Ys DAE DSt Ys	

The *BltCopyAlternateP* command copies rectangle between two separate drawing frames.

Please set XRES(X resolution) to in 8 byte units when using this command. And please set SStride and DStride to in 8 byte units.

Command:

TopLeft

Starts BitBlt transfer from top left coordinates.

Drawing clipping is not wok for this command.

BltCopyAltAlphaBlendP (Format5)

31 24	23 16	15 0
BltCopyAlternateP	Command	Reserved
	SAE	DDR
	SSt	ride
SR	Ys	SRXs
	Blend	Stride
Blend	dRYs	BlendRXs
DR	Ys	DRXs
BRs	izeY	BRsizeX

The **BltCopyAltAlphaBlendP** command performs alpha blending for the source (specified using SADDR, SStride, SRXs, SRXy) and the alpha map (specified using ABR (alpha base address), BlendStride, BlendRXs, BlendRYs) and then copies the result of the alpha blending to the destination (specified using FBR (frame buffer base address), XRES (X resolution), DRXs, and DRYs).

Please set XRES(X resolution) to in 8 byte units when using this command. And please set SStride and BlendStride to in 8 byte units.

Only the BitBlt command allows XRES to be in 8-byte units or boundary. For all other purposes, XRES has to be in 64-byte units. Therefore, unless BitBlt is the only rendering engine function being used, XRES must be set in 64-byte units. In general, it is also recommended for XRES to be in 64-byte units.

Command:

reserved

Set 0000_0000 to maintain future compatibility.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 11 GDC Register MAP

Terms appeared in this chapter are explained below:

- 1. Register address Indicates address of register
- 2. Bit number Indicates bit number
- 3. Bit field name
 - Indicates name of each bit field included in register
- R/W Indicates access attribute (read/write) of each field Each symbol shown in this section denotes the following:
 - R0 "0" always read at read. Write access is Don't care.
 - W0 Only "0" can be written.
 - R Read enabled
 - W Write enabled
 - RX Read enabled (read values undefined)
 - RW Read and write enabled
 - RW0 Read and write 0 enabled
- 5. Initial value

Indicates initial value of immediately before the reset of each bit field.

- 6. Handling of reserved bits
 - Reserved bits should write "0".

11.1 Local memory register list

11.1.1 Host interface register list

Base = HostBase

136

FUJIT	SU SEMICONDUCTOR CONFIDENTIAL
Offset	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	ERR_DETECT
50C	
	INT_MSK
510	
	XINT_ACT
514	

11.1.2 I²C interface register list

Offset	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0													
000	Reserved	BSR													
004	Reserved	BCR													
008	Reserved CCR														
00C	Reserved	ADR													
010	Reserved	DAR													
014	Access Prohibitation														
018	Access Prohibitation														
01C	Access Prohibitation														

11.1.3 GPIO register list

Base = PIOBase

Offset	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
	GPIOC1
40	GPIO_is_out GPIO_inout
	GPIOC2
44	GPIO_force GPIO_xor
	PIC1
4C	이 문 정 정 GPIO_INT_enable
	PIC2
50	GPIO_INT_polarity
	PIC3
54	GPIO_INT_mode
	PIST
80	OF F F OF OF GPIO_INT_status

11.1.4 Graphics memory interface register list

Base = HostBase

	Duoo			540	0																								
I	Offset	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															1	0											
ſ																	MN	ЛR											
	FFFC		TWR				-			וצעח		TR	C			IRP	Т	RA	s	TRCD	LUWD	F	RTS	5	SAW	ASW		CL	

11.1.5 Display controller register list

Base =	Di	spl	aył	Bas	se																												
Offset	31	30	29	9 2	8 2	7	26	25	24	23	22	21	20	19	18	17	16	15	14	13	3 12	2 11	1	09	8	7	6	5	4	3	2	1	0
		_											DC	CM) (E	Disp	lay	Со	ntro	IN	lod	e 0))										
000	DEN													L45E	L23E	L1E	LOE	CKS					S	С		EEQ				SF	ESY	SYN	٩C
													DC	CM	1 (E	Disp	lay	Со	ntro	IN	lod	e 1))										
100																CKS				ç	SC			EEQ				SF	ESY	SYN	٩C		
		DCM2 (Display C															Со	ntro	I N	lod	e 2))											
104																														RUF	RUMO		
		EEE_E_E_E_E_E_E_E_E_E_EEEEEE															Со	ntro	IN	1od	e 3))											
108				-																			POM	DCKed	DCKinv					D	СКД		
004					ŀ	ΗT	P (ŀ	ΗT	ota	l Pix	els	5)													Res	erv	ed						
008					ŀ	HD	B (I		Disp	olay	Во	uno	dar	y)								ŀ	IDI	P (H	l Dis	spla	y P	eric	d)				
00C			V	/SV	V					HS	w											F	ISF	P (⊦	l Sy	nc p	ouls	e P	osi	tion)		
010					١	/TI	R (\	/ Т	ota	l Ra	ste	rs)													Res	erv	ed						
014					١	/D	P (\	/ [Disp	olay	Pe	rioc	d)									V	/SF	۶ (V	' Syı	nc p	uls	e P	osit	ion)		
018					٧	٧Y	((M	/in	dov	vY)												۷	٧X	(W	indc	w)	()						
01C					١	N۲	I (V	/in	do١	w He	eigh	nt)										V	VN	/ (W	/ind	ow '	Wic	lth)					

Base = DisplayBase

FUJITSU SEMICONDUCTOR CONFIDENTIA

Offset	31	30	29	28	27	26	2	25	24	23 22 21	20	19 18 17 16	15	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0
												LOM (LO	0 M	ode	e)		
020	LOC									L0W (L0 n	ner	nory Width)					L0H (L0 Height)
024											ļ	L00A0 (L0 O	rigiı	n Ao	ddr	ess	0)
028												LODAO (LO Di	ispla	ay A	٨dd	res	s 0)
02C					LC	D,	Y (L0	Di	splay Y)							L0DX (L0 Display X)
								Ļ				LOEM (LO E	xte	nd N	No	le)	
110	LOE	EC								LOPB							ГОМР
114					LC)W	Y	(LC	N (/indow Y)							L0WX (L0 Window X)
118					LC)W	н	(L0) W	/indow Heig	ght	t)					L0WW (L0 Window Width)
												L1M (L1 Mod	e)				
030	L1C	L1YC	L1CS	L1IM						L1W (L1 n	ner	nory Width)					
034								L1	O/	A0(L1 Orig	gin	Address 0)	/ C	BD	A0	(Ca	apure Buffer Display Address 0)
038										C	CBDA1(Ca	ptu	re I	But	fer	Display Address 1)	
	L1EM (L1 Extend Mode)																
120	L1E	EC					ſ	L1D	м	L1PB							
124					L1	W	Y	(L1	W	/indow Y)							L1WX (L1 Window X)
128					L1	w	Н	(L´	N	/indow Hei	ghi	t)					L1WW (L1 Window Width)
			L2	2M	(L2	М	bc	e)									
040	L2C	L2F	LP							L2W(L2 m	ner	mory Width)					L2H (L2 Height)
044												L2OA0 (L2 O	rigiı	n Ao	ddr	ess	0)
048												L2DA0 (L2 Di	ispla	ay A	٩dc	res	s 0)
04C												L2OA1 (L2 O	rigiı	n Ao	ddr	ess	1)
050												L2DA1 (L2 Di	ispla	ay /	\dc	res	s 1)
054					L2	2D	Y (L2	Di	splay Y)							L2DX (L2 Display X)
	L2EM (L2 Extend Mode)																
130	L2E	L2EC															L20M
134					L2	2W	Y	(L2	2 W	/indow Y)							L2WX (L2 Window X)
138					L2	<u>2</u> W	Н	(L2	2 W	/indow Heig	ght	t)					L2WW (L2 Window Width)

Offset	31	30	29	28	27	26	6 2	5	24	23 2	2 21	20	1	9 18	17	16 1	5	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0
058															L3M	(L3 N	Лc	de)		
050	L3C	L3I	=LP							L3	W (L	3 me	em	nory V	(Vidth)						L3H (L3 Height)
05C															L3	OAC) (∟3	Ori	gin	Address 0)
060															L3	DA0	(L	.3 E	Disp	olay	Address 0)
064															L3	OA1	(∟3	Ori	gin	Address 1)
068															L3	DA1	(L	.3 [Disp	olay	Address 1)
06C								L	3D	DY (L	3 Dis	spla	y ۱	Y)							L3DX (L3 Display X)
													L	_3EN	Л (L3	Exte	en	d N	/lod	e)	
140	L3	EC								L	.3PB										L30M
144	L3WY (L3 Window Y)																				L3WX (L3 Window X)
148	L3WH (L3 Window Height)																				L3WW (L3 Window Width)
070	L4M (L4 Mode)																				
070	L4C	L4FLP L4W (L4 memory Width)																			L4H (L4 Height)
074) (L4	Ori	gin	Address 0)
078																			Disp	olay	Address 0)
07C				L4DA0 (L4 Display Address 0) L4OA1 (L4 Origin Address 1)															Address 1)		
080		L4OA1 (L4 Origin Address 1) L4DA1 (L4 Display Address 1)															Address 1)				
084								L	4C	DY (L	4 Dis	spla	y١	Y)							L4DX (L4 Display X)
													L	_4EN	Л (L4	Exte	en	d N	/lod	e)	
150	L4	EC																			L40M
154								L	W	/Y (L4	4 Wi	ndo	w	Y)							L4WX (L4 Window X)
158							Ľ	4W	Η	(L4 V	Vind	ow	He	eight)						L4WW (L4 Window Width)
088															L5M	(L5 N	Λс	de)		
000	L5C	L5I	=LP							L5\	W (L	5 me	em	nory V	(Vidth)						L5H (L5 Height)
08C															L5	OAC) (L5	Ori	gin	Address 0)
090															L5	DA0	(L	.5 E	Disp	olay	Address 0)
094															LS	OA1	(∟5	Ori	gin	Address 1)
098															L5	DA1	(L	.5 E	Disp	olay	Address 1)
09C								L	5D)Y (L	5 Dis	spla	y `	Y)							L5X (L5 Display X)
													L	_5EN	Л (L5	Exte	en	d N	/lod	e)	
160	L5	EC																			L50M
164								L	5W	/Y (L	5 Wi	ndo	w	Y)							L5WX (L5 Window X)
168							L	5W	Н	(L5 V	Vind	ow	He	eight)						L5WW (L5 Window Width)

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1																	_														
Offset	31	30	29	28	27	26	25	24	23	22 2	1 2	0	19	18	17	16	15	14	13	12	11	10) 9	8		76	5	4	4 3	2	1	0
											C	P	М						(СИТ	Ċ(Cu	rsor	Tra	an	nspa	rent	С	ontr	ol)		
0A0											CENT	CENO			cu01	cuoi								CUZT				С	υτα	С		
0A4															С	UO.	۹0	(CL	Jrs	or0	Orio	gin	Ado	dres	SS))						
0A8						•	CU	Y0	(Cu	rsor0	Po	sit	ion	Y)									CU	X0	(0	Curs	or0	Pc	ositic	on X)	
0AC															С	UO.	A1	(CL	Jrs	or1	Orio	gin	Ado	dres	ss))						
0B0							CU	Y1	(Cu	rsor1	Po	sit	ion	Y)									CU	X1	(0	Curs	or1	Pc	ositic	on X)	
												Μ	IDC) (N	/lult	i Di	spla	ay C	Cor	ntrol)											
170	MDen																			SC	1en	1						S	C0e	n		
		•	DLS (Display Layer Select))														
180										DLS	5			DL	S4			DL	.S3	;		D	LS2			D	LS1			DL	.S0	1
184				DBGC (Display Back Ground Color)																												
	LOBLD (LO Blend)																															
0B4																LOBE	LOBS	LOBI	LOBP									L	.0BF	ર		
														L1	BLI	D (L	.1 E	Bler	nd)													
188																L1BE	L1BS	L1BI	L1BP									L	.1BF	ર		
														L2	BLI) (L	.2 E	Bler	nd)													
18C																L2BE	L2BS	L2BI	L2BP									L	2BF	ર		
														L3	BLI	D (L	.3 E	Bler	nd)													
190																L3BE	L3BS	L3BI	L3BP									L	.3BF	ર		
10.1														L4	BLI	D (L	.4 E	Bler	nd)													
194																L4BE	L4BS	L4BI	L4BP									L	.4BF	2		
400														L5	BLI		.5 E	Bler	nd)													
198																L5BE	L5BS	L5BI										L	.5BF	2		
Offset	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14 13 12	11	10	9 8	7	7 6	6 5		4	3 2	1	0			
--------	-------	----	----	----	-----	-----	------	-----	------	------	-----	------	-------	------	------	------	----------	------------	--------------	----------	--------	-----	------	-------	-----	------	-----	---	---			
0BC																		L	отс	(L0	Tran	spa	areı	nt C	on	trol	I)					
UBC																	L0ZT		L0	TC (L	.0 Tr	an	spa	irent	t C	olo	or)					
				L2	2TC	(L2	2 Tr	ans	spar	ent	Co	ntro	ol)				I	L	зтс	(L3	Tran	spa	arei	nt C	on	trol	I)					
0C0	L2ZT				L2	тс	(L2	Tra	ansp	bare	ent	Col	or)				L3ZT		L3	TC(L	.3 Tra	ans	spa	rent	t C	olo	r)					
										L	.0E	тс	(L0	Ex	ten	d Ti	rans	sparency	Cor	trol)												
1A0	LOEZT														L0	ET	C (L	0 Extend	Tra	inspa	rent	Сс	olor)								
		1	1				-	-		l	L1E	TC	: (L	1 T	rans	spa	rent	Extend C	Cont	rol)												
1A4	L1EZT														L1	ET	C (L	1 Extend	Tra	inspa	rent	Сс	olor)								
		1	I			•				ļ	L2E	тс	: (L:	2 T	rans	spa	rent	Extend C	Cont	rol)												
1A8	L2EZT														L2	ET	C (L	2 Extend	Tra	inspa	rent	Сс	olor)								
		1					-			ļ	L3E	тс	; (L:	3 T	rans	spa	rent	Extend C	Cont	rol)												
1AC	L3EZT														L3	ET	C (L	3 Extend	Tra	inspa	rent	Сс	olor)								
		I	1	ı					1		L4E	TC	; (L	4 E	xter	nd T	[ran	sparent C	Cont	rol)												
1B0	L4EZT														L4	ET	C (L	4 Extend	Tra	inspa	rent	Сс	olor)								
							-				L5E	TC	: (L	5 E	xter	nd T	[ran	sparent C	Cont	rol)												
1B4	L5EZT														L5	ET	C (L	5 Extend	Tra	inspa	rent	Сс	olor)								
150		1						-		L	.1Y	CR	0 (L	_1 \	/C 1	o R	Red (Coefficier	nt 0)													
1E0										i	a12													a1	1							
1E4					·					L	_1Y	CR	1 (L	1	/C 1	o R	Red (Coefficier	<u>nt 1)</u>													
												b1												a1	3							
1E8					1	T				L	.1Y	CG	0 (l	_1`	YC	to G	Free	n Coeffici	ient	0)												
											a22													a2	:1							
1EC			-	-	1	1		1					G1 ((L1	YC	to (Gree	en Coeffic	cien	t 1)												
	╟											b2												a2	:3							
1F0		1	1	ł	r								0 (L	.1 \	/C t	o B	lue	Coefficier	nt 0) I)												
											a32					_				<u> </u>				a3	51							
1F4			1	I	1	1		1		L			1 (L	.1 \	′C t	o B	lue	Coefficier	nt 1) I)												
												b3												a3	3							

Offset	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
100	LOPALO
400	A G B
404	L0PAL1
:	:
7FC	L0PAL255
800	L1PAL0
800	A R G B
804	L1PAL1
:	
BFC	L1PAL255
1000	L2PAL0
1000	A G B
1004	L2PAL1
:	:
13FC	L2PAL255
1400	L3PAL0
1400	A G B
1404	L3PAL1
:	:
17FC	L3PAL255

11.1.6 Video capture register list

B <u>ase = Ca</u>	aptureE	Base			-																							
Offset	31 30	29 28	3 27	26	25 2	24 2	23 22	21	20	19 1	8 17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								_	V	CM (Vide	eo C	ap	ture	e Mo	de)											1
000	VIE VIS				СМ				⊳			-		-									-	-		NRGB	VS	
004				1						CS	C (C	apt	ure															
	V	SCI					٧	/SC							ISC							H	ISC	F				
008	- I I		<u> </u>				1		V	CS (\	/ide	<u>o C</u>	apt	ure	Sta	tus)	-	-				1					
																						<u> </u>			CE	<u>:</u>		
010		<u> </u>	1	: :					C	BM (Cap	ture	e Bl	ıπe		_)											Т
010	00 SBUF	PAU					CBV	N (s	stric	le)				C24	BED	CSW		S	SS			SSI	M	HRV				CBST
014								СВ	OA	(Cap	oture	e Bu	Iffer	<u> </u>		-	ldre	ess)					<u> </u>		<u> </u>		
018										(Cap					-				,									
01C							CIV	STF	२												C	ЛН	ST	R				
020							CIV	EN	D												C	лн	ΕN	D				
200											(CVC	CNT	Γ														
300																					C	:VC	CNT	Г				
028									СН	P (Ca	aptu	re I	lori	zor	ntal	Pix	el)											
020																							Cł	ΗP				
02C										VP (C	Capt	ure	Ve	rtica	al Pi	xel)											
								CV	PP			~											CV	'ΡΝ				
40		-		~ //		1	1	1	l				PF				T	T							1			
					_PF				<u> </u>	(Cap			an	ify (2011		Ci	70)				L						
048							CM			(Cap	luie		gn		<u>30u</u>		01	20)			0	.M	SVI					
										(Cap	oture	Ma	aan	ifv I	i Disp	lav	' Si	ze))			2101						
04C							СМ			1								/			C	СМ	DV	L				
080						F	RGBH	HC(RG	iB inp	out ⊦	ISY	'NC	: Cy	/cle)	/VI	N_	HS	SIZ	ΖE								
000																GBI												
084			<u> </u>							RGB	inp	ut ⊢	lori	zon	tal E	Ena	able	e Ar	ea)	_							
														4:00			1.0	A	-)		R	GB	HE	N				
088								RGB		I(RG	BIN	pul	ver			ab	ne .	Are	a)	_								
		I					Г	КGБ		RGB			inn	 		\sim					RG	DV	'EN	-				
090		-									5(R	-		ut c													~	•
												RM															ΗР	۷P
0C0						R	GBC	MY	(R	GB C	olor	COI	nve	rt N	/latri	хY	΄ cc	beff	icie	nt))							
			а	11								a´											a	13				
0C4						RG	BCN	ИCb	(R	GB C	olor			rt N	1atri	x C	b d	coe	ffic	ien	it)							
			a	21								aź		unt. N	1-1				(; . ;				aź	23				
0C8			~	31		RG	BCI		(R	GB C	oior	cor a3		IT IV	atri	хU	vr C	oet	ſICI	en	ι)			33				
			d	51		P	GRC	l CMh		GB C	olor			rt M	latri	y h		effi	icie	nt)			d	55				
000				b1		1			(1)		000		b2	1111	aul	<u>, n</u>)				b3				

Offset	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
4000										(CD	CN	(Ca	iptu	ıre	Da	ta C	Cou	nt f	or l	NTS	SC)										
4000									BI	1CC	N														V	DC	N					
4004											C	DCF	P(C	apt	ure	e Da	ata	Со	unt	for	PA	L)										
4004									BI	DCF	D														V	DC	P					

11.1.7 Drawing engine register list

The parenthesized value in the Offset field denotes the absolute address used by the **SetRegister** command.

Base =	Dr	aw	Ba	se							
Offset	31	30	29	28	27	26	25	24	23 22 21 20 19	18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000			1	1	1					Y	S
(000)	s	S	s	s					Int		Frac
004			1	1						Х	S
(001)	s	s	s	s					Int		Frac
008				1	1					dX	dy
(002)	s	s	s	s					Int		Frac
00C										ΧL	Js
(003)	s	S	s	s					Int		Frac
010										dXL	Jdy
(004)	s	s	s	s					Int		Frac
014										XI	S
(005)	s	s	s	s					Int		Frac
018										dXI	dy
(006)	s	s	s	s					Int		Frac
01C				1						US	
(007)	0	0	0	0					Int		0
020	-	-	-	-					-	LS	
(008)	0	0	0	0					Int	_	0
040	Ů		ů	ů						R	
(010)	0	0	0	0	0	0	0	0	Int		Frac
044	-	-	-		-	-	-			dR	
(011)	s	S	s	s	s	s	s	S	Int		Frac
048	0		Ů	Ũ	Ŭ	0	0	•		dR	
(012)	s	s	s	s	s	s	s	S	Int	urt	Frac
	0	0	0	0	0	0	0	0		G	
04C (013)	0	0	0	0	0	0	0	0	Int	0	Frac
	0	0	0	0	0	0	0	0	III	40	
050 (014)	S	6	_	_	<u> </u>	<u> </u>	0	<u> </u>	Int	dG	Frac
	5	S	S	S	S	S	S	S			
054			6	-	6		6		1 4	dG	•
(015)	S	S	S	S	S	S	S	S	Int		Frac
058			<u> </u>							В	
(016)	0	0	0	0	0	0	0	0	Int		Frac
05C			1		<u> </u>					dB	
(017)	S	S	S	S	S	S	S	S	Int		Frac
060			1		r					dB	•
(018)	S	S	S	S	S	S	S	S	Int		Frac

Base = DrawBase

Offset	31 30	29	28	27	26	25	24	23	22	21	20	1	9	18	17	16	6 15	i 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
080																	Zs	_
(020)	0							Ir	nt									Frac
084																d	Zdx	
(021)	S							Ir	nt									Frac
088																d.	Zdy	
(022)	S							Ir	nt								2.0	Frac
0C0 (030)	s s								Int								Ss	Frac
	5 5	S														h	Sdx	
0C4 (031)	s s	s							Int							u	Jux	Frac
	0 0	Ŭ														d	Sdy	
0C8 (032)	s s	s							Int									Frac
0000																	Ts	
(033)	s s	s							Int									Frac
0D0																ď	Tdx	
(034)	s s	s							Int									Frac
0D4																ď	Tdy	
(035)	s s	s							Int									Frac
0D8																(ຊs	
(036)	0 0	0	0	0	0	0	INT											Frac
0DC																d	Qdx	
(037)	s s	s	s	s	s	s	INT											Frac
0E0		1	1													d	Qdy	
(038)	s s	s	s	s	s	s	INT											Frac
140				r												L	PN	
(050)	0 0	0	0						Ir	nt								0
144				1												L	Xs	
(051)	S S	S	S						Ir	nt								Frac
148										1			Т				Xde	
(052)	S S	S	S	S	S	S	S	S	S	S	S	:	S	s	S	ţ		Frac
14C																L	Ys	
(053)	S S	S	S						Ir	nt							<u> </u>	Frac
150																1	Yde	
(054)	S S	S	S	S	S	S	S	S	S	S	S	:	S	s	S	<u>+</u>		Frac
154																L	Zs	
(055)	S							Ir	nt								7.1	Frac
158								1-								L	Zde	
(056)	S							ır	nt									Frac

MB86276 'LIME' GDC Specifications Rev1.1a

Offset	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
180		
(060)	s s s s Int	Frac
184	P1	/dc
(061)	s s s s Int	Frac
188	P2	Zdc
(062)	s Int	Frac
200	R	Xs
(080)	s s s s Int	0
204	R	Ys
(081)	s s s s Int	0
208	Rsi	zeX
(082)	s s s s Int	0
20C	Rsi	zeY
(083)	s s s s Int	0
240	SAI	DDR
(090)	0 0 0 0 0 0 0	Address
244	SSI	ride
(091)	0 0 0 0 Int	0
248		2Xs
(092)	0 0 0 0 Int	0
24C		2Ys
(093)	0 0 0 0 Int	0
250		DDR
(094)		Address
254		rride
(095)		0
258		RXs
(096)	0 0 0 0 Int	0 RYs
25C (097)		0
260		izeX
(098)	0 0 0 0 Int	0
264		izeY
(099)	0 0 0 0 Int	0
280		olor
(0A0)	0	Color
3E0		PO
(0f8)		BCR

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CTR 400 Ю Ю (100) HN H Ш PS FCNT SS DS IFSR 404 빌빌빌 (-) IFCNT 408 (-) FCNT SST 40C SS (-) DST 410 (-) DST PST 414 (-) PS EST 418 ОЦ Ю (–) MDR0 420 ZР Υ ö (108) CF BSV BSH MDR1/MDR1S/MDR1B/MDR1TL 424 ΝZ SC (109) LW В ВM ZCL ВГ LOG MDR2/MDR2S/MDR2TL 428 ΜZ ZC SM (10a) TΤ LOG ΒM ZCL MDR3 42C Ħ 5 (10b) ТАВ TBL TWS TWT MDR4 430 Щ LOG (10c) ВM

FUJITSU SEMICONDUCTOR CONFIDENTIAL

Offset	31 30	29 28	27	26 25	5 24	23	22 21	20	19	18	17	16 15	14	13 12	2 11	1 10	9	8	7	6	5 4	4 3	3 2	1	0
440												FBR			_										
(110)													F	BAS	Ε										
444			1 1									XRES													
(111)																			Х	RE	S				
448											•	ZBR		•											
(112)													Z	BAS	Ε										
44C												TBR													
(113)													Т	BAS	Ε										
450												PFBR													
(114)													PF	BAS	E										
454												CXMI	1												
(115)																			CLI	PXI	MIN	1			
458								T	1		(CXMA	x												
(116)																			CLI	PXN	۸A>	X			
45C																									
(117)																									
460																									
(118)																			CLI	PYN	۸A	X			
464												TXS	<u>г г</u>												
(119)						T)	KSN												ТΧ	SM					
468	 											TIS	1 1		-	-	1								
(11a)								٦	ΓIS	N												TIS	SM		
46C								1	1		1	TOA	T T												
(11b)																			XE	30					
474												ABR													
(11D)													A	BAS	E										
480	 											FC													
(120)													F	FGC	3/16	6/24									
484												BC													
(121)													E	BGC	3/16	6/24									
488				<u> </u>	1		-	1	r		1	ALF			T			<u> </u>							
(122)								<u> </u>														A			
48C												BLP													
(123)																									
494				1								TBC													
(129)																	E	BC1	6/24						

Offset	31	30	29	28	27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
540					LX0dc
(150)	0	0	0	0	Int 0
544					LY0dc
(151)	0	0	0	0	Int 0
548		1		1	LX1dc
(150)	0	0	0	0	Int O
54C		1		r –	LY1dc
(151)	0	0	0	0	Int O
580		1		1	X0dc
(160)	0	0	0	0	Int O
584		1		1	Y0dc
(161)	0	0	0	0	Int O
588		1		1	X1dc
(162)	0	0	0	0	Int O
58C				1	Y1dc
(163)	0	0	0	0	Int 0
590					X2dc
(164)	0	0	0	0	Int 0
594				1	Y2dc
(165)	0	0	0	0	Int 0
4A0					DFIFO
(128)					DFIFO

12 Explanation of GDC Registers

Terms appeared in this chapter are explained below:

- 6. Register address Indicates address of register
- 7. Bit number Indicates bit number
- 8. Bit field name
 - Indicates name of each bit field included in register
- R/W Indicates access attribute (read/write) of each field Each symbol shown in this section denotes the following:
 - R0 "0" always read at read. Write access is Don't care.
 - W0 Only "0" can be written.
 - R Read enabled
 - W Write enabled
 - RX Read enabled (read values undefined)
 - RW Read and write enabled
 - RW0 Read and write 0 enabled
- 10. Initial value

Indicates initial value of immediately before the reset of each bit field.

6. Handling of reserved bits

"0" is recommended for the write value so that compatibility can be maintained with future products.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 12.1 Host interface registers

Register address	HostBaseAddress + 00	н
Bit number	31:30:29:28:27:26:25:24	23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0
Bit field name	Reserved	DTC
R/W	R0	RW
Initial value	0	Don't care

DTC (DMA Transfer Count)

DTC is a readable/writable 32-bit register which sets the transfer count in either one long-word (32 bits) or 32 bytes units. When "1h" is set transfer is performed once. However, when "0h" is set, it indicates the maximum transfer count and 16M (16,777,216) data are transferred. During DMA transfer, the remaining transfer count is shown, therefore, the register value cannot be overwritten until DMA transfer is completed.

Note: This register need not be set in a mode in which Dual DMA ACK is not used, or the V832 mode.

DSU (DMA Set Up)

Register address	HostBaseA	Address + 0	4н					
Bit number	7	6	5	4	3	2	1	0
Bit field name			Reserved			DAM	DBM	DW
R/W			R0			RW	RW	RW
Initial value			0			0	0	0

Bit 0 DW (DMA Word)

Specifies DMA transfer count

- 0: 1-double word (32 bits) per DMA transfer
- 1: 8-double words (32 bytes) per DMA transfer (only SH4)
- Bit 1 DBM (DMA Bus request Mode)

Selects DREQ mode used in DMA transfer in dual-address mode

- 0: DREQ is not negated during DMA transfer irrespective of cycle steal or burst mode.
- 1: DREQ is negated irrespective of cycle steal or burst mode when CORAL cannot receive data (that is, when Ready cannot be returned immediately). When CORAL is ready to receive data, DREQ is reasserted (When DMA transfer is performed in the single-address mode, DREQ is controlled automatically).
- Bit 2 DAM (DMA Address Mode)

Selects DMA address mode in issuing external request

- 0: Dual address mode
- 1: Single address mode (SH4 only)
- Bit 3 DNA (Dual address No Ack mode)

This bit is selected when using the dual-address-mode DMA that does not use the ACK signal.

- 0: Uses dual-address-mode DMA that uses ordinary ACK signal
- 1: Uses dual-address-mode DMA that does not use ACK signal Detection of the DREQ edge is supported; DREQ is negated per transfer. When data cannot be received irrespective of the Bit1 setting, DREQ continues being negated.

DRM (DMA Request Mask)

Register address	Hos	stBa	seAdo	dress -	+ 05 н								
Bit number		7		6		5		4		3	2	1	0
Bit field name							R	eserve	d				DRM
R/W								R0					RW
Initial value								0					0

This register enables the DMA request. Setting "1" to this register to temporarily stop the DMA request from the CORAL. The external request is enabled by setting "0" to this register.

DST (DMA STatus)

Register address	Ho	ostBaseAddress + 06⊦											
Bit number		7		6		5		4		3	2	1	0
Bit field name			Reserved								DST		
R/W								R0					R
Initial value								0					0

This register indicates the DMA transfer status. DST is set to "1" during DMA transfer. This state is cleared to "0" when the DMA transfer is completed.

DTS (DMA Transfer Stop)

Register address	Host	lostBaseAddress + 08⊦											
Bit number	-	7		6		5		4		3	2	1	0
Bit field name		Reserved DT								DTS			
R/W								R0					RW
Initial value								0					0

This register suspends DMA transfer.

An ongoing DMA transfer is suspended by setting DTS to "1".

In the dual-address without ACK mode, to end the DMA transfer, write "1" to this register after CPU DMA transfer.

LTS (display Transfer Stop)

			/										
Register address	HostBa	ostBaseAddress + 09н											
Bit number	7		6		5		4		3		2	1	0
Bit field name						R	Reserve	d					LTS
R/W							R0						RW
Initial value		0 0											

This register suspends DisplayList transfer.

Ongoing DisplayList transfer is suspended by setting LTS to "1".

LSTA (displayList transfer STAtus)

Register address	Ho	stBa	seAd	ldress ·	+ 10н								
Bit number		7		6		5		4		3	2	1	0
Bit field name		Reserved									LSTA		
R/W								R0					R
Initial value								0					0

This register indicates the DisplayList transfer status from Graphics Memory. LSTA is set to "1" while DisplayList transfer is in progress. This status is cleared to 0 when DisplayList transfer is completed

DRQ (DMA ReQquest)

Register address	Hos	ostBaseAddress + 18н												
Bit number		7		6		5		4		3		2	1	0
Bit field name							R	eserve	d					DRQ
R/W								R0						RW1
Initial value								0						0

This register starts sending external DMA request.

DMA transfer using the external request handshake is triggered by setting DRQ to "1". The external DREQ signal cannot be issued when DMA is masked by the DRM register. This register cannot be written "0". When DMA transfer is completed, this status is cleared to "0".

IST (Interrupt STatus)

Register address	HostBa	seAddress + 20н				
Bit number	31-30-29	28-27-26-25-24 23-22-21-20	19-18 17 16	15-14-13-12-11-10-9-8-7-6	5 4 3 2	1 0
Bit field name		Reserved	Resv	Reserved	IST	IST
R/W		R0	R0W0	R0	RW0	RW0
Initial value		0	0	0	0	0

This register indicates the current interrupt status. It shows that an interrupt request is issued when "1" is set to this register. The interrupt status is cleared by writing "0" to this register.

Bit 0	CERR (Command Error Flag) Indicates drawing command execution error interrupt
Bit 1	CEND (Command END) Indicates drawing command end interrupt
Bit 2	VSYNC (Vertical Sync.) Indicates vertical interrupt synchronization
Bit 3	FSYNC (Frame Sync.) Indicates frame synchronization interrupt
Bit 4	SYNCERR (Sync. Error) Indicates external synchronization error interrupt
Bit 5	REGUD (Register update) Indicates register update interrupt
Bit 17 and 16	Reserved This field is provided for testing. Normally, the read value is "0", but note that it may be "1" when a drawing command error (Bit 0) has occurred.

IMASK (Interrupt MASK)

	Register address	HostBaseAddress + 24H									
	Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18	17 16	15 14 13 12 11 10 9 8 7 6	5 4 3 2	1 0					
I	Bit field name	Reserved	Reserved Resv Reserved IMASK IMASK								
	R/W	R0	R0W0	R0	RW	RW					
	Initial value	0	0	0	0	0					

This register masks interrupt requests. Even when the interrupt request is issued for the bit to which "0" is written, interrupt signal is not asserted for CPU.

157

Bit 0 CERRM (Command Error Interrupt Mask)

Masks drawing command execution error interrupt

Bit 1	CENDM (Command Interrupt Mask)
	Masks drawing command end interrupt
Bit 2	VSYNCM (Vertical Sync. Interrupt Mask)
	Masks vertical synchronization interrupt
Bit 3	FSYNCH (Frame Sync. Interrupt Mask)
	Masks frame synchronization interrupt
Bit 4	SYNCERRM (Sync Error Mask)
	Masks external synchronization error interrupt
Bit 5	REGUD (Register update)
	Masks register update interrupt

SRST (Software ReSeT)

Register address	Hos	ostBaseAddress + 2Cн												
Bit number		7		6		5		4		3	2	1		0
Bit field name							R	eserve	d				S	RST
R/W								R0					1	W1
Initial value								0						0

This register controls software reset. When "1" is set to this register, a software reset is performed.

CCF (Change of Clock Frequency)

Register address	HostBaseAddress + 0038 _H	 									
Bit number	31:30:29:28:27:26:25:24 23:22:21:20:19:18	17 16	15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0								
Bit field name	Reserved	COT	Reserved								
R/W	RW0	RW	RW0								
Initial value	0	00	0								

This register changes the operating frequency.

Bit 17 and 16 COT (Clock select for GDC)

Selects the clock for GDC

- 11 Reserved
- 10 Reserved
- 01 133 MHz
- 00 100 MHz

Notes:

1. Write "0" to the bit field other than the above ([31:18], [15:00]).

LSA (displayList Source Address)

Register address	HostBaseAddress + 40)н	
Bit number	31 30 29 28 27 26 25 24	23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2	1:0
Bit field name	Reserved	LSA	
R/W	R0	RW	R0
Initial value	0	Don't care	0

This register sets the DisplayList transfer source address. When DisplayList is transferred from Graphics Memory, set the transfer start address of DisplayList stored in Graphics Memory. Since the lower two bits of this register are always treated as "0", DisplayList must be 4-byte aligned. The values set at this register do not change during or after transfer.

LCO (displayList Count)

Register address	HostBaseAddress + 44	4н
Bit number	31:30:29:28:27:26:25:24	23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0
Bit field name	Reserved	LCO
R/W	R0	RW
Initial value	0	Don't care

This register sets the DisplayList transfer count. Set the display list transfer count by the long word. When "1h" is set, 1-word data is transferred. When "0" is set, it is considered to be the maximum count and 16M (16,777,216) words of data are transferred. The values set at this register do not change during or after transfer.

LREQ (displayList transfer REQuest)

Register address	HostBa	seAd	dress +	- 48 н							
Bit number	7		6		5		4	3	2	1	0
Bit field name						F	Reserved				LREQ
R/W							R0				RW1
Initial value							0				0

This register triggers DisplayList transfer from the Graphics Memory. Transfer is started by setting LREQ to "1". The DisplayList is transferred from the Graphics Memory to the internal display list FIFO. Access to the display list FIFO by the CPU or DMA is disabled during transfer.

The reserved area in the register area in the host interface excluding the abovementioned. Please write ALL0 when you write to the Reserved area. A read will produce undefined results.

RSW (Register location Switch)

Register address	Hos	tBas	seAd	dress +	+ 5C _Н								
Bit number		7		6		5		4		3	2	1	0
Bit field name							R	eserve	d				RSW
R/W								R0					RW
Initial value								0					0

In SH3 or SH4 mode, set this register when moving the register area from the center (1FC0000) to the end of the GDC area (3FC0000). This move can be performed when "1" is written to this register.

Set this register at the first access after reset. Access GDC after about 20 bus clocks after setting the register.

DMA_ST_ADR

Register address	н	ost	Ba	se/	٩dc	fres	ss + 50	00 _H
Bit number	31	30	29	28	27	26	25 24	23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0
Bit field name								DMA_ST_ADR
R/W								RW
Initial value								26'h3FFFFF

DMA start address (*address width, 16-bit CPU:[23:0], 32-bit CPU[25:0]) When DMA_ST_ADR≦[input address]≦DMA_ED_ADR, it is DMA transfer. When [input address]>DMA_ST_ADR, it is normal access.

DMA_ED_ADR

Register address	Н	ostl	Ba	se/	٩do	lres	ess + 504 _H
Bit number	31	30	29	28	27	26	5:25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0
Bit field name							DMA_ED_ADR
R/W							RW
Initial value							26'h0

DMA end address (*address width, 16-bit CPU:[23:0], 32-bit CPU[25:0]) When DMA_ST_ADR≦[input address]≦DMA_ED_ADR, it is DMA transfer. When [input address]>DMA_ED_ADR, it is normal access.

ERR_ADR

. —							
Register address	Н	ostl	Ba	se	Ado	dres	ss + 508 _H
Bit number	31	30	29	28	3-27	26	25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0
Bit field name							ERR_ADR
R/W							R
Initial value							26'h0

This register keeps the address, when the below interrupt request occurs.

It accesses the following order, upper address of 32-bit and lower address of 32-bit in 16-bit CPU mode.

It accesses the randam address in 16-bit CPU mode.

ERR_DETECT

	Register address	H	ost	Ba	se/	٩dc	Ires	ss -	+ 5	0C1	н																						
ĺ	Bit number	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit field name																															lacksquare	lacksquare
	R/W																															RW	RW
	Initial value																															0	0

Bit0: 16-bit CPU interrupts status register

When "1" is set on the bit0, it shows the following interrupt request.

It accesses the following order, upper address of 32-bit and lower address of 32-bit in 16-bit CPU mode.

It clears the status by writing "0" on the bit0.

Bit1: 16-bit CPU interrupts status register

When "1" is set on the bit0, it shows the following interrupt request.

It accesses the randam address in 16-bit CPU mode. (It accesses the following order, lower address of 32-bit and upper address of 32-bit, but it is not a continuance address.)

It clears the status by writing "0" on the bit1.

MB86276 'LIME' GDC Specifications Rev1.1a

INT_MSK

	Register address	Н	ostl	Ba	se/	٩dd	Ires	ss -	⊦ 5′	10⊦	ł																						
Ī	Bit number	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit field name																																
	R/W																															RW	RW
	Initial value																															0	0

Bit0: 16-bit CPU interrupts request mask register (It accesses the following order, upper address of 32-bit and lower address of 32-bit in 16-bit CPU mode.)

It masks 16-bit CPU interrupts.

When "0" is set on the bit0, it does not assert interrupts signal even if the interrupts request occurs.

Bit1: 16-bit CPU interrupts request mask register (It accesses a randam address in 16-bit CPU mode.) It masks 16-bit CPU interrupts.

When "0" is set on the bit1, it does not assert interrupts signal even if the interrupts request occurs.

INT_MSK

Register address	Н	ost	Bas	se/	٨dd	lres	s I	- 5 ⁻	14 _⊦	ł																						
Bit number	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name																																\bullet
R/W																																RW
Initial value																																0

XINT polarity change signal

"0" is Low Active, "1" is High Active.

12.1.1 GPIO control registers

GPIO control 1 (GPIOC1)

Register address	PIOBaseAddress+40h	
Bit number	31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit field name	GPIO_is_out	GPIO_inout
R/W	R0W	R/W
Initial value	0000_0000	XXXX_XXXX (*1)

The register controls the GPIO pins. Each bit can be set correspondingly from MSB to LSB by couple 1 in each bit.

(*1) The value of the GPIO pin is reflected longer than the fixed time.

(*2) Changes to the GPIO pin are not immediately reflected in the register. It takes time more than constancy (system clock cycle order) to mutual reflection with the GPIO pin.

Bit15-0	_ `	GPIO input/output data)(*2) e GPIO pin is read and written.
	At read	The value of external pin GPIO15-0 can be read about the bit to which '0' is set with GPIO is out.
		However, the bit reversing value of external pin GPIO15-0 is read about the bit that GPIOC2.GPIO xor is set to '1'.
		When GPIOC2.GPIO_force is set to '1', the value in which the write is compulsorily done to GPIO inout is read as it is (*3).
		The value in which the write is done to GPIO_inout is read as it is (*3) about the bit to which '1' is set with GPIO_is_out. (*3 The influence of GPIO_xor is not undertaken.) inout (at read) = (is out force) ? inout (at write) : (xor ^ GPIO pin)
	At write	The write value is output to external pin GPIO15-0 about the bit to which '0' is set with GPIO_is_out. The write value is output to external pin GPIO15-0 about the bit to which '1' is set with GPIO is out.
		However, the bit reversing value is output about the bit that GPIOC2.GPIO_xor is set to '1'.
		GPIO pin = (is_out) ? (xor ^ inout (at write)) : Hi-Z
Bit31-16	GPIO_is_out (GPIO direction)
	The allowed the set	of each hit of the terminal CDIO 1/O is exectioned

The direction of each bit of the terminal GPIO I/O is specified. At read : 0 is always read.

At write : The corresponding bit of '1' is an output of this.

GPIO control 2 (GPIOC2)

Register address	PIOBaseAddress +44h	
Bit number	31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit field name	GPIO_force	GPIO_xor
R/W	R/W	R/W
Initial value	0000_0000	0000_0000

The register controls the GPIO pin. Each set bit can be set corresponding from MSB to LSB by couple 1 in each bit. Refer to the paragraph of GPIOC1 for details.

Bit15-0	GPIO_xor (GPIO_inout read/write data invert) Bit of GPIO_inout='0' '0' : An untouched value of external pin GPIO15-0 is read from GPIO_inout. '1' : A reversed value of external pin GPIO15-0 is read from GPIO_inout.
	Bit of GPIO_inout='1' '0' : The value in which the write is done to GPIO_inout is reflected in external pin GPIO15-0 as it is. '1' : The reversing value in which the write is done to GPIO_inout is reflected in external pin GPIO15-0 as it is.
Bit31-16	GPIO_force (GPIO_inout force enable for input port read) It is set whether to force the read value of GPIO_inout set to the input. '0' : not force '1' : The read value of a bit of GPIO_inout concerned is forced to the value in which the write is done to GPIO_inout.

12.1.2 Peripheral Interrupt related registers

Peripheral Interrupt control1 (PIC1)

Register address	PIOBaseAddress +4Ch									
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Bit field name	Reserve T	WTO	RTO	S1	GPIO_INT_enable					
R/W	R0W0 S	RW	RW	RW	RW					
Initial value	0000_0000 <	0	0	0	0000_0000					

The register controls the interrupt which relates to peripheral logic.

The one of GPIO reacts without regard to input and output in the situation of the setting.

Each set bit can be set corresponding from MSB to LSB by couple 1 in each bit.

Bit15-0	GPIO_INT_enable (GPIO interrupt enable) It is set whether the generation of interrupt of each bit by the value in which external pin GPIO15-0 is sampled with the internal clock. Interrupt is not generated for '0'. Interrupt is generated for '1' based on the following register setting.
Bit16	S1 (Serial1 Interrupt Enable) Interrupt when data is abandoned is set because of word not read by input FIFO of serial 1CH. 0:Interrupt is not generated. 1:Interrupt is generated.
Bit17	RTO (Internal bus timeout interrupt Enable for read) It is specified whether interrupt is generated when input FIFO Read Wait time of an internal bus becomes more than a set cycle. (This bit does not work if it is not TE bit = 1 of SPC2 registers.) 0:Interrupt is not generated. 1:Interrupt is generated.
Bit18	WTO (Internal bus timeout interrupt Enable for write) It is specified whether interrupt is generated when input FIFO Read Wait time of an internal bus becomes more than a set cycle. (This bit does not work if it is not TE bit = 1 of SPC2 registers.) 0:Interrupt is not generated. 1:Interrupt is generated.
Bit19	OFE (Output FIFO empty interrupt Enable) It is specified whether interrupt is generated when output FIFO becomes empty. 0:Interrupt is not generated. 1:Interrupt is generated.

Peripheral Interrupt control2 (PIC2)

PIOBaseAddress +50h	
31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserve	GPIO_INT_polarity
R0W0	R/W
0000_0000	0000_0000
	31-30-29-28-27-26-25-24-23-22-21-20-19-18-17-16- Reserve R0W0

The register controls interrupt concerning GPIO.

It reacts without regard to input and output in the situation of the setting.

Each set bit can be set corresponding from MSB to LSB by couple 1 in each bit.

Bit15-0 GPIO_INT_polarity (GPIO interrupt polarity)

Interrupt is generated for the following values.

0: When you detect Level '0' or negative edge (Depend on GPIO_INT_mode)

1: When you detect Level '1' or positive edge (Depend on GPIO_INT_mode)

Peripheral Interrupt control3 (PIC3)

Register address	PIOBaseAddress +54h	
Bit number	31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16	15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0
Bit field name	Reserve	GPIO_INT_mode
R/W	R0W0	R/W
Initial value	0000_0000	0000_0000

The register controls interrupt concerning GPIO.

It reacts without regard to input and output in the situation of the setting.

Each set bit can be set corresponding from MSB to LSB by couple 1 in each bit.

Bit15-0 GPIO_INT_mode (GPIO interrupt mode)

0: level sensitive ('0' or '1' depends on GPIO_INT_polarity)

1: edge sensitive ('pos' or 'neg' depends on GPIO_INT_polarity)

Peripheral Interrupt Status (PIST)

Register address	PIOBaseAddress +80h									
Bit number	31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0									
Bit field name	Reserve	Reserve	OFE	WTO	RTO	S1	GPIO_INT_status			
R/W	R0W0	R0W0	R/W0	R/W0	R/W0	R/W0	R/W0			
Initial value	0000_0000	0000_0000	0	0	0	0	0000_0000			

The register shows the state of the interrupt which relates to peripheral logic. It clears by 0 Write. This state is consolidated and it is reflected in bit17 of host interface register IST.

Bit15-0	GPIO_INT_status (GPIO interrupt status)Shows that interrupt is generated by the bit of the correspondence of GPIO.0: interrupt is not generated1: interrupt is generated
Bit16	S1 (Serial1 port interrupt status)In Serial1communication, It is shown that interruption which notifies that input data was thrown away occurred.0: interrupt is not generated1: interrupt is generated
Bit17	RTO (Internal bus timeout interrupt Status for read)It is shown that interruption when the input FIFO Read Wait time of an internal bus becomes more than a setting cycle occurred.0: interrupt is not generated1: interrupt is generated
Bit18	WTO (Internal bus timeout interrupt Status for write)It is shown that interruption when the output FIFO Read Wait time of an internal bus becomes more than a setting cycle occurred.0: interrupt is not generated1: interrupt is generated
Bit19	OFE (Output FIFO empty interrupt Status) It is shown that interruption when Output FIFO becomes empty occurred. 0: interrupt is not generated 1: interrupt is generated

Revision

Register address	PIOBaseAddress +84h								
Bit number	31-30-29-28-27-26-25-24-23-22-21-20-19-18-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-1-0								
Bit field name	YEAR	VERSION	REVISION						
R/W	RO								
Initial value	0x2005	0x01	0x00						

The register shows the chip version.

12.1.3 I²C Interface Registers

BSR (Bus Status Register)

Register address I2C Base Address + 000h										
Bit No	7	6	5	4	3	2	1	0		
Bit field name	BB	RSC	AL	LRB	TRX	AAS	GCA	FBT		
R/W	R	R	R	R	R	R	R	R		
Default	0	0	0	0	0	0	0	0		

All bits on this register are cleared while bit EN on CCR register is "0".

Bit7	BB (Bus Busy)
	Indicate state of I2C-bus
	0: STOP condition was detected.
	1: START condition (The bus is in use.) was detected.
Bit6	RSC (Repeated START Condition)
	Indicate repeated START condition
	This bit is cleared by writing "0" to INT bit, the case of not addressed in a slave mode, the
	detection of START condition under bus stop, and the detection of STOP condition.
	0: Repeated START condition was not detected.
	1: START condition was detected again while the bus was in use.
Bit5	AL(Arbitration Lost)
	Detect Arbitration lost
	This bit is cleared by writing "0" to INT bit.
	0: Arbitration lost was not detected.
	1: Arbitration occurred during master transmission, or "1" writing was performed to MSS bit
	while other systems were using the bus.
Bit4	LRB (Last Received Bit)
	Store Acknowledge
	This bit is cleared by detection of START condition or STOP condition.
Bit3	TRX (Transmit / Receive)
	Indicate data receipt and data transmission.
	0: receipt
	1: transmission
Bit2	AAS (Address As Slave)
	Detect addressing
	This bit is cleared by detection of START condition or STOP condition.
	0: Addressing was not performed in a slave mode.
5.4	1: Addressing was performed in a slave mode.
Bit1	GCA (General Call Address)
	Detect general call address (00h)
	This bit is cleared by detection of START condition or STOP condition.
	0: General call address was not received in a slave mode.
D.10	1: General call address wad received in a slave mode.
Bit0	FBT (First Byte Transfer)
	Detect the 1st byte
	Even if this bit is set to "1" by detection of START condition, it is cleared by writing "0" on
	INT bit or by not being addressed in a slave mode.
	0: Received data is not the 1st byte.
	1: Received data is the 1st byte (address data).

FUJITSU SEMICONDUCTOR CONFIDENTIAL BCR (Bus Control Register) Register address I2C Base Address + 0004h

Bit No	7	6	5	4	3	2	1	0				
Bit field name	BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT				
R/W	R/W0	R/W	R0/W1	R/W	R/W	R/W	R/W	R/W				
Default	0	0	0	0	0	0	0	0				
	11											
Bit7	BER (Bus Error)											
	Flag bit for request of bus error interruption											
	When this bit is set, EN bit on CCR register will be cleared, this module will be in a stop											
	state and data transfer will be discontinued.											
	write case											
	0: A request of buss error interruption is cleared.											
	1: Don't	care.										
	read cas	<u>se</u>										
	0: A bus	error was n	ot detected.									
					ndition was	detected wh	nile data tra	nsfer.				
Bit6	•		erruption Ena	able)								
		us error inte	-									
					interruption	is generate	d.					
			error interru	-								
D.1.5			s error interru	uption								
Bit5	•	art Conditio										
	Generate START condition											
	write case											
	0: Don't care. 1: START condition is generated again at the time of master transmission.											
D:#4			-	again at t	ne time of n	naster transr	nission.					
Bit4	MSS (Master Slave Select)											
	Select master / slave mode											
	When arbitration lost is generated in master transmission, this bit is cleared and this											
	module becomes a slave mode.0: This module becomes a slave mode after generating STOP condition and completing											
			omes a slave	e mode aft	er generatir	IS 210P CO	nuition and	completing				
	transfer.		moo o moot	or mode -	oporata - 0		ion and at-	to transfer				
Bit3		noquie becc CKnowledge		er moue, g	enerales S	TART condit	ion and stal	ns nansier				
Dito	•	•		no at tha tir	no of data r	acantian						
	Permit generation of acknowledge at the time of data reception This bit becomes invalid at the time of address data reception in a slave mode.											
	0: Acknowledge is not generated. 1: Acknowledge is generated.											
Bit2	GCAA(General Call Address Acknowledge)											
	Permit generation of acknowledge at the time of general call address reception											
	0: Acknowledge is not generated.											
	1: Acknowledge is generated.											
Bit1		ITerrupt Ena										
-		nterruption	- /									
		•	nterruption is	s generated	d if INT bit is	s "1".						
		pition of inte	-	.								
		ssion of inte	-									
Bit0	INT (INT		•									
	•	• •	of interruptio	n for transf	er end							
						vel. If this b	oit is cleare	d by being				
						e transfer is		-				
	reset to '	"0" hy gener	rating of STA	ART conditi		condition a	t the time o	f a maatar				
	reset to "0" by generating of START condition or STOP condition at the time of a master. write case											

- 0: The flag is cleared.
- 1: Don't care.
- read case

0: The transfer is not ended.

1: It is set when 1 byte transfer including the acknowledge bit is completed and it corresponds to the following conditions.

- It is a bus master.
- It is an addressed slave.

- It was going to generate START condition while other systems by which arbitration lost happened used the bus.

Competition of SCC, MSS and INT bit

Competition of the following byte transfer, generation of START condition and generation of STOP condition happens by the simultaneous writing of SCC, MSS and INT bit. The priority at this case is as follows.

- 1) The following byte transfer and generation of STOP condition
 - If "0" is written to INT bit and "0" is written to MSS bit, priority will be given to "0" writing to MSS bit and STOP condition will be generated.
- 2) The following byte transfer and generation of START condition If "0" is written to INT bit and "1" is written to SCC bit, priority will be given to "1" writing to SCC bit and START condition will be generated.
- Generation of START condition and STOP condition The simultaneous writing of "1" to SCC bit and "0" to MSS bit is prohibition.

FUJITSU SEMICONDUCTOR CONFIDENTIAL CCR (Clock Control Register)

Register addres	s I2C Bas	e Address + (0008h					
Bit No	7	6	5	4	3	2	1	0
Bit field name	-	HSM	EN	CS4	CS3	CS2	CS1	CS0
R/W	R1	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	1	0	0	-	-	-	-	-
Bit7	Nonuse "1" is alv	ways read a	t read.					
Bit6	Select 0:	igh Speed N speed-mode	standar	d-mode		1	•	n-speed-mode tandard-mode
Bit5 Bit4	EN (Ena Permiss When the cleared. 0: Prohit 1: Perm	able) ion of opera	ation ", each bit cleared whe eration eration	n BER bit i	-	jister (exce	ept BER and	d BEIE bit) is
	Set up t Frequer Please standa	he frequenc	y of a serial serial transf not to exce 00KHz	transfer cl fer clock is	shown as th	-		ster operation.

standard-mode

fscl =
$$\frac{A}{(2 \times m)+2}$$

high-speed-mode

fscl =
$$A$$

int(1.5 x m)+2

A: I2C system clock = 16.6MHz

<Notes>

+2 cycles are minimum overhead to confirm that the output level of SCL terminal changed. When the delay of the positive edge of SCL terminal is large or when the clock is extended by the slave device, it becomes larger than this value.

The value of m becomes like the following page to the value of CS 4-0.

CS4	CS3	CS2 CS1 CS0		m					
					standard	high-speed			
0	0	0	0	0	65	inhibited			
0	0	0	0	1	66	inhibited			
0	0	0	1	0	67	inhibited			
0	0	0	1	1	68	inhibited			
0	0	1	0	0	69	inhibited			
0	0	1	0	1	70	inhibited			
0	0	1	1	0	71	inhibited			
0	0	1	1	1	72	inhibited			
0	1	0	0	0	73	9			
0	1	0	0	1	74	10			
0	1	0	1	0	75	11			
0	1	0	1	1	76	12			
0	1	1	0	0	77	13			
0	1	1	0	1	78	14			
0	1	1	1	0	79	15			
0	1	1	1	1	80	16			
1	0	0	0	0	81	17			
1	0	0	0	1	82	18			
1	0	0	1	0	83	19			
1	0	0	1	1	84	20			
1	0	1	0	0	85	21			
1	0	1	0	1	86	22			
1	0	1	1	0	87	23			
1	0	1	1	1	88	24			
1	1	0	0	0	89	25			
1	1	0	0	1	90	26			
1	1	0	1	0	91	27			
1	1	0	1	1	92	28			
1	1	1	0	0	93	29			
1	1	1	0	1	94	30			
1	1	1	1	0	95	31			
1	1	1	1	1	96	32			

Nonuse

Address Register(ADR)

Register address	I2C Base Ad	2C Base Address + 000Ch							
Bit No	7	6	5	4	3	2	1	0	
Bit field name	-	A6	A5	A4	A3	A2	A1	A0	
R/W	R1	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Default	1	-	-	-	-	-	-	-	

Bit7

"1" is always read at read.

 Bit6 - 0
 A6 - 0 (Address6 - 0)

 Store slave address
 In a slave mode it is compared with DAR register after address data reception, and when in agreement, acknowledge is transmitted to a master.

Data Register(DAR)

Register address	I2C Base A	C Base Address + 0010h								
Bit No	7	6	5	4	3	2	1	0		
Bit field name	D7	D6	D5	D4	D3	D2	D1	D0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Default	-	-	-	-	-	-	-	-		

Bit7 - 0 D7 - 0 (Data7 - 0)

Store serial data

This is a data register for serial data transfer. The data is transferred from MSB. At the time of data reception (TRX=0) the data output is set to "1".

The writing side of this register is a double buffer. When the bus is in use (BB=1), the write data is loaded to the register for serial transfer for every transfer. At the time of read-out, the receiving data is effective only when INT bit is set because the register for serial transfer is read directly at this time.

12.2 Graphics memory interface registers

MMR (Memory I/F Mode Register)	MMR	(Memory	I/F	Mode	Register)
--------------------------------	-----	---------	-----	------	-------------------

Register address	Н	HostBaseAddress + FFFC _H													
Bit number	31	30	29 28 27	26	25	24 23	22-21-20-19	18-17	16 15 14	13 12	11 10	9 8 7	6 5 4	3	2 1 0
Bit field name	*1	tWR	Reserved	*1	*1	TRRD	TRC	TRP	TRAS	TRCD	LOWD	RTS	SAW	ASW	CL
R/W	RW	RW		R1 W0	R	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial value	0	0	Don't care	1	0	00	0000	00	000	00	00	000	000	0	000

*1: Reserved

This register sets the mode of the graphics memory interface. A value must be written to this register after a reset. (When default setting is performed, a value must also be written to this register.) Only write once to this register; do not change the written value during operation.

This register is not initialized at a software reset.

Bit 2 to 0	CL (CAS Latency)
------------	------------------

Sets the CAS latency. Write the same value as this field, to the mode register for SDRAM

011CL3010CL2Other than
the aboveSetting disabled

Bit 3 ASW (Attached SDRAM bit Width)

Sets the bit width of the data bus (memory bus width mode)

- 1 Reserved
- 0 32 bit

Bit 6 to 4 SAW (SDRAM Address Width)

Sets the bit width of the SDRAM address

- 001 15 bit BANK 2 bit ROW 13 bit COL 9 bit SDRAM
- 111 14 bit BANK 2 bit ROW 12 bit COL 9 bit SDRAM
- 110 14 bit BANK 2 bit ROW 12 bit COL 8 bit SDRAM
- 101 13 bit BANK 2 bit ROW 11 bit COL 8 bit SDRAM
- 100 12 bit BANK 1 bit ROW 11 bit COL 8 bit FCRAM

Other than Setting disabled the above

Bit 9 to 7 RTS (Refresh Timing Setting)

Sets the refresh interval

- 000 Refresh is performed every 384 internal clocks.
- 111 Refresh is performed every 1552 internal clocks.
- 001 to 110 Refresh is performed every '64 \times n' internal clocks in the 64 to 384 range.

Bit 11 and 10	LOWD								
		nt of clocks secured for the period from the instant the ending data is instant the write command is issued.							
	It is able to a	adjust the internal timing of memory interface by the setting.							
	11	3 clocks							
	10	2 clocks							
	01	1 clocks							
	Other than the above	Setting disabled							
Bit 13 and 12	TRCD								
	Sets the wai express the	t time secured from the bank active to CAS. The clock count is used to wait time.							
	11	3 clocks							
	10	2 clocks							
	01	1 clock							
	00	0 clock							
Bit 16 to 14	TRAS								
	Sets the minimum time for 1 bank active. The clock count is used to express the minimum time.								
	111	7 clocks							
	110	6 clocks							
	101	5 clocks							
	100	4 clocks							
	011	3 clocks							
	010	2 clocks							
	Other than the above	Setting disabled							
Bit 18 and 17	TRP								
		t time secured from the pre-charge to the bank active. The clock count is ess the wait time.							
	11	3 clocks							
	10	2 clocks							
	01	1 clock							
Bit 22 to 19	TRC								
		ts the wait time secured from the refresh to the bank active. The clock d to express the wait time.							
	1010	10 clocks							
	1001	9 clocks							
	1000	8 clocks							
	0111	7 clocks							
	0110	6 clocks							
	0101	5 clocks							
MB86276 'LIME' Rev1.1a	GDC Specif	ications 175							

	0100	4 clocks
	0011	3 clocks
	Other than the above	Setting disabled
Bit 24 and 23	TRRD	
		t time secured from the bank active to the next bank active. The clock d to express the wait time.
	11	3 clocks
	10	2 clocks
Bit 26	Reserved	
		Always write "0" at write.
		"1" is always read at read.
Bit 30	TWR	
	Sets the write charge comr	e recovery time (the time from the write command to the read or to the pre- nand).
	1	2 clocks
	0	1 clock

FUJITSU SEMICONDUCTOR CONFIDENTIAL 12.3 Display control registers

Register address	Di	isplayBaseAddress + 00	н (Г	DCI	M0)													
Bit number	31	30 29 28 27 26 25 24 23	22 21	20	19	18	17	16	15	14 13	12 11 10 9 8	7	6	5	4	3	2	1 0
Bit field name	DEN	Reserve			L45E	L23E	L1E	LOE	CKS	Resv	SC	EEQ		Resv	Resv	SF	ESΥ	SYNC
R/W	RW	RX			RW	RW	RW	RW	RW	R0	RW	RW		RW	R0	RW	RW	RW
Initial value	0	Х			0	0	0	0	0	0	11110	0		0	0	0	0	00
Register address	DisplayBaseAddress + 100 _H (DCM1)																	
Bit number	31	30 29 28 27 26 25 24 23	22 21	20	19	18	17	16	15	14 13	12 11 10 9 8	7	6	5	4	3	2	1 0
Bit field name	DEN	Reserve	L5E	L4E	L3E	L2E	L1E	LOE	CKS	Resv	SC	EEQ		Resv	Resv	SF	ESΥ	SYNC
R/W	RW	RW	RW	RW	RW	RW	RW	RW	RW	R0	RW	RW		RW	R0	RW	RW	RW
Initial value	0	х	0	0	0	0	0	0	0	0	11101	0		0	0	0	0	00

DCM0/1 (Display Control Mode 0/1)

Bit 1 to 0

SYNC (Synchronize)

This register controls the display count mode. It is not initialized by a software reset. This register is mapped to two addresses but it is one substance. The differences between the two registers are the format of the frequency division rate setting (SC) and layer enable. The two formats exist to maintain backword compatibility with previous products.

Set synchronization mode X0 Non-interlace mode 10 Interlace mode 11 Interlace video mode Bit 2 ESY (External Synchronize) Sets external synchronization mode 0: External synchronization disabled 1: External synchronization enabled Bit 3 SF (Synchronize signal format) Sets format of synchronization (VSYNC, HSYNC) signals 0: Negative logic 1: Positive logic Bit 7 EEQ (Enable Equalizing pulse) Sets CCYNC signal mode 0: Does not insert equalizing pulse into CCYNC signal 1: Inserts equalizing pulse into CCYNC signal Bit 13 to 8 SC (Scaling) Divides display reference clock by the preset ratio to generate dot clock Offset = 0 $Offset = 100_H$ x00000 Frequency not divided 000000 Frequency not divided MB86276 'LIME' GDC Specifications 177 Rev1.1a

	x000	001	Frequency division rate = 1/4	000001	Frequency division rate = 1/2						
	x000	010	Frequency division rate = 1/6	000010	Frequency division rate = 1/3						
	X00	011	Frequency division rate = 1/8	000011	Frequency division rate = 1/4						
		:		:							
	x11 [·]	111	Frequency division rate = 1/6	4 111111	Frequency division rate = 1/64						
	Whe	en n is	s set, with Offset = 0, the freque	ency division	rate is 1/(2n + 2).						
	Whe	en m i	s set, with Offset = 100h, the fi	requency divis	sion rate is 1/(m + 1).						
	Bec	Basically, these are setting parameters with the same function $(2n + 2 = m + 1)$. Because of this, $m = 2n + 1$ is established. When n is set to the SC field with Offset = 0, $2n + 1$ is reflected with Offset = 100h.									
	Also, when PLL is selected as the reference clock, frequency division rates 1/1 to 1/5 are non-functional even when set; other frequency division rates are assigned.										
Bit 15	CKS	S (Clo	ck Source)								
	Sele	ects re	eference clock								
	0:	Inter	nal PLL output clock								
	1:	DCL	KI input								
Bit 16	L0E	E (LO la	ayer Enable)								
	Enables display of the L0 layer. The L0 layer corresponds to the C layer for previous products.										
	0:	Doe	s not display L0 layer								
	1:	Disp	lays L0 layer								
Bit 17	L1E	E (L1 la	ayer Enable)								
		ibles o ducts.	lisplay of the L1 layer. The L1	layer corresp	onds to the W layer for previous						
	0:	Doe	s not display L1 layer								
	1:	Disp	lays L1 layer								
Bit 18	L23	E (L2	& L3 layer Enable) DCM	0							
			simultaneous display of the L2 or previous products.	and L3 layers	. These layers correspond to the						
	0:	Doe	s not display L2 and L3 layer								
	1:	Disp	lays L2 and L3 layer								
	L2E	E (L2 la	ayer Enable) DCM1								
	Ena	bles L	2 layer display								
	0:	Doe	s not display L2 layer								
	1:	Disp	lays L2 layer								
Bit 19	L45	E (L4	& L5 layer Enable) DCN	10							
			simultaneous display of the L4 r previous products.	and L5 layers	. These layers correspond to the						
	0:	Doe	s not display L4 and L5 layer								
	1:	Disp	lays L4 and L5 layer								

L3E (L3 layer Enable)) ----- DCM1 Enables L3 layer display

0: Does not display L3 layer

1: Displays L3 layer

Bit 20	L4E (L4 layer Enable)
	Enables L4 layer display

- 0: Does not display L4 layer
- 1: Displays L4 layer
- Bit 21 L5E (L5 layer Enable) Enables L5 layer display
 - 0: Does not display L5 layer
 - 1: Displays L5 layer
- Bit 31 DEN (Display Enable) Enables display
 - 0: Does not output display signal
 - 1: Outputs display signal
| - | omiz (Biopiay | | | | | |
|---|---------------------|---|--------|--------|-----|-----|
| | Register
address | DisplayBaseAddress + 104 _H | | | | |
| | Bit number | 31 30 29 28 27 28 17 16 15 14 13 12 11 10 9 8 7 6 5 | 4 | 3 2 | 1 | 0 |
| | Bit field name | Reserve | Reserv | Reserv | RUF | RUM |
| | R/W | R0 | R0 | R0 | RW | RW |
| | Initial value | 0 | 0 | 0 | 0 | 0 |

DCM2 (Display Control Mode 2)

Bit0 RUM (Register Update Mode)

The mode reflects the register value synchronizing with vertical synchronization is selected.

- 0: The register update is in real time reflected in the internal control circuit. The display falls into disorder when updating it for the display period.
- 1: It value of the register spreads to the internal control circuit synchronizing with vertical synchronization. The simultaneity is controlled with the following RUF flags.

Bit1 RUF (Register Update Flag)

The value is directed to be updated in the following vertical synchronization in writing 1 in this flag. If the update ends, it becomes 0.

- 0: Initial or update end
- 1: Vertical synchronous waiting

DCM3 (Display	Control M	lode 3)											
Register address	DisplayBas	seAddress + 108 _H											
Bit number	31 30 29	17 16 15 14 13 12	11	10	9	8	7	6	5	4	3	2	1 0
Bit field name		reserve	resv	POM	DCKed	DCKinv	Res	erve			DCł	<d< td=""><td></td></d<>	
R/W		R0	R0	RW	RW	RW	RW0	R0			RV		
Initial value		0	0	0	0	0	0	0			0000	000	
Bit5-0		Display Clock Delay) ines additional delay tir	ne bv	intern	al PLI	_ clock	(perio	od.					
	000000	No additional delay	,										
		-											
	000010	+2 PLL clock											
	000100	+3 PLL clock											
	000110	+4 PLL clock											
	:	:											
	111110	+33 PLL clock											
	xxxxx1	reserve											
Bit8	0: DC	(Display Clock inversio CLKO output signal is no CLKO output signal is in	ot inve										
Bit9	DCKed This def 0: sin 1: bi-ı	(Display clock edge) ines which edge mode gle edge mode in which edge mode in which po tput to identify two data	is use n posi sitive	ed. tive e edge	•		-					tal R	ЭB
Bit10	This def 0: mu dig	arallel output Mode) ines a way to output tw Iltiplex output mode in v ital RGB output. rallel output mode in w	vhich	two d	ata str	eams	are m	ultiple			-		
	-	other data stream goes				-		3	,				

C

HTP (Horizontal Total Pixels)

Register address	Displa	ayB	as	eAd	dress	+ 06	ł																					
Bit number	15	14		13	12	11	:	10	:	9	:	8	-	7	:	6	:	5	:	4	-	3	:	2	:	1	-	0
Bit field name		Re	sei	ved												ŀ	HTF	D										
R/W			R)												I	RW	/										
Initial value			0													Dor	n't c	care	:									

This register controls the horizontal total pixel count. Setting value + 1 is the total pixel count.

HDP (Horizontal Display Period)

Register address	Disp	layBa	seAd	dress -	+ 08⊦	ł																					
Bit number	15	14	13	12	11	-	10	-	9	-	8	-	7	-	6	-	5	-	4	-	3	-	2	-	1	-	0
Bit field name		Res	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved HDP																								
R/W		F	R 0													R٧	/										
Initial value			0												Dor	n't d	care										

This register controls the total horizontal display period in unit of pixel clocks. Setting value + 1 is the pixel count for the display period.

HDB (Horizontal Display Boundary)

Register address	Displ	layBa	seAdd	ress +	- 0A _H																				
Bit number	15	14	13	12	11	-	10	9	8	-	7	-	6		5	-	4	-	3	-	2	-	1	-	0
Bit field name		Rese	erved										Н	IDE	3										
R/W		F	20										F	RW	/										
Initial value		(0										Don	't c	are										

This register controls the display period of the left part of the window in unit of pixel clocks. Setting value + 1 is the pixel count for the display period of the left part of the window. When the window is not divided into right and left before display, set the same value as HDP.

HSP (Horizontal Synchronize pulse Position)

Register address	Displ	layBa	seAdd	ress +	- 0C⊦	ł																					
Bit number	15	14	13	12	11	Ē	10	-	9	-	8	÷	7	-	6	-	5	-	4	-	3	-	2	-	1	-	0
Bit field name		Rese	erved												ŀ	IS	Ρ										
R/W		R	20													R٧	V										
Initial value		()												Dor	n't o	care										

This register controls the pulse position of the horizontal synchronization signal in unit of pixel clocks. When the clock count since the start of the display period reaches setting value + 1, the horizontal synchronization signal is asserted.

HSW (Horizontal Synchronize pulse Width)

Register address	DisplayBa	seAddress +	- 0Eн						
Bit number	7	6	5	4		3	2	1	0
Bit field nam	е				HSW				
R/W					RW				
Initial value				Do	on't ca	ire			

This register controls the pulse width of the horizontal synchronization signal in unit of pixel clocks. Setting value + 1 is the pulse width clock count.

VSW (Vertical Synchronize pulse Width)

Register address	DisplayBa	aseAddress -	⊦ 0F _H						
Bit number	7	6	5	4	3		2	1	0
Bit field name	Res	served				VSW			
R/W		R0				RW			
Initial value		0			Do	on't ca	re		

This register controls the pulse width of vertical synchronization signal in unit of raster. Setting value + 1 is the pulse width raster count.

VTR (Vertical Total Rasters)

Register address	Disp	lay	/Bas	seAdo	dress +	- 12 _H																						
Bit number	15	1	14	13	12	11	:	10	-	9	-	8	-	7	-	6	:	5	-	4	-	3	:	2	:	1	:	0
Bit field name		F	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reserved VTR																									
R/W			R	0													RW	/										
Initial value			R0 RW 0 Don't care																									

This register controls the vertical total raster count. Setting value + 1 is the total raster count. For the interlace display, Setting value + 1.5 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the total raster count for 1 field; $2 \times$ setting value + 3 is the

VSP (Vertical Synchronize pulse Position)

Register address	DisplayBaseAddress + 14 _H
Bit number	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit field name	Reserved VSP
R/W	R0 RW
Initial value	0 Don't care

This register controls the pulse position of vertical synchronization signal in unit of raster. The vertical synchronization pulse is asserted starting at the setting value + 1st raster relative to the display start raster.

VDP (Vertical Display Period)

Register address	Displ	layBa	seAdd	Iress +	- 16 _H																					
Bit number	15	14	13	12	11	10	-	9	-	8	÷	7	-	6	-	5	-	4	÷	3	÷	2	-	1	-	0
Bit field name		Rese	erved											١	/DF	2										
R/W		F	20												RW	/										
Initial value			0											Dor	n't c	care										

This register controls the vertical display period in unit of raster. Setting value + 1 is the count of raster to be displayed.

-0	IVI (LU IAYEI IVI	iuu	10)				
	Register address	Di	splayE	aseAddress +	20 _H		
	Bit number	31	30 29	28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12	11-10-9-8-7-6-5-4-3-2-1-0
	Bit field name	LOC	Reserved	Reserved	LOW	Reserved	LOH
	R/W	RW	R0	R0	RW	R0	RW
	Initial value	0	0	0	Don't care	0	Don't care

LOM (L0 layer Mode)

Bit 11 to 0 L0H (L0 layer Height)

Specifies the height of the logic frame of the L0 layer in pixel units. Setting value + 1 is the height

- Bit 23 to 16 L0W (L0 layer memory Width) Sets the memory width (stride) of the logic frame of the L0 layer in 64-byte units
- Bit 31 L0C (L0 layer Color mode)

Sets the color mode for L0 layer

- 0 Indirect color (8 bits/pixel) mode
- 1 Direct color (16 bits/pixel) mode

L0EM (L0-layer Extended Mode)

Register address	Displa	ayBaseAddress +	110 _H		
Bit number	31:30	29 28 27 26 25 24	23 22 21 20	19:18:17:16:15:14:13:12:11:10: 4 3 2 1	: 0
Bit field name	L0EC	Reserved	LOPB	Reserved	L0WP
R/W	RW	R0	RW	R0	RW
Initial value		0		0	0

 Bit 0
 L0 WP (L0 layer Window Position enable)

 Selects the display position of L0 layer

 0
 Compatibility mode display (C layer supported)

 1
 Window display

 Bit 23 to 20
 L0PB (L0 layer Palette Base)

Shows the value added to the index when subtracting palette of L0 layer. 16 times of setting value is added.

Bit 31 and 30 L0EC (L0 layer Extended Color mode)

Sets extended color mode for L0 layer

- 00 Mode determined by L0C
- 01 Direct color (24 bits/pixel) mode
- 1x Reserved

L0OA (L0 layer Origin Address)

Register address	DisplayBaseAdd	ress + 24 _H	
Bit number	31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	3 2 1 0
Bit field name	Reserved	LOOA	
R/W	R0	RW	R0
Initial value	0	Don't care	0000

This register sets the origin address of the logic frame of the L0 layer. Since lower 4 bits are fixed at "0", address 16-byte-aligned.

L0DA (L0-layer Display Address)

I	Register address	DisplayBas	seAdd	ress + 28 _H
Ī	Bit number	31 30 29 28	27 26	25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
F	Bit field name	Reserve	ed	LODA
ſ	R/W	R0	RW0	RW
I	Initial value	0		Don't care

This register sets the display origin address of the L0 layer. For the direct color mode (16 bits/pixel), the lower 1 bit is "0", and this address is treated as being aligned in 2 bytes.

L0DX (L0-layer Display position X)

Register address	Displ	ayBas	seAdd	ress +	- 2C⊦	ł																					
Bit number	15	14	13	12	11	÷	10	-	9	÷	8	-	7	-	6	÷	5	-	4	-	3	÷	2	-	1	-	0
Bit field name		Rese	erved												L	0D	Х										
R/W		F	20													R٧	/										
Initial value		(0												Dor	n't c	care										

This register sets the display starting position (X coordinates) of the L0 layer on the basis of the origin of the logic frame in pixels.

L0DY (L0-layer Display position Y)

Register address	Displ	ayBas	seAdd	ress +	· 2E _H	I																					
Bit number	15	14	13	12	11	-	10	-	9	-	8	-	7	-	6	-	5	-	4	-	3	÷	2	-	1	-	0
Bit field name		Rese	erved												L	0D	Y										
R/W		F	20												I	RW	/										
Initial value			0												Dor	n't c	care										

This register sets the display starting position (Y coordinates) of the L0 layer on the basis of the origin of the logic frame in pixels.

L0WX (L0 layer Window position X)

Register address	Displ	layBa	seAdd	lress +	- 114⊦	I										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L0\	NX					
R/W		Reserved R0								R	W					
Initial value		(0													

This register sets the X coordinates of the display position of the L0 layer window.

LOWY (L0 layer Window position Y)

Register address	Displ	layBa	seAdd	Iress +	- 116 _⊦	l										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L0	NY					
R/W		F	20							R	W					
Initial value		(0													

This register sets the Y coordinates of the display position of the L0 layer window.

L0WW (L0 layer Window Width)

Register address	Displ	ayBa	seAdd	ress +	- 118 _⊦	ł											
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	(0
Bit field name		Rese	erved							L0V	VW						
R/W		R	20							R	W						
Initial value		(C							Don't	care						

This register controls the horizontal direction display size (width) of the L0 layer window. Do not specify "0".

L0WH (L0 layer Window Height)

Register address	Displ	layBa	seAdd	ress +	- 11A⊦	ł										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L0\	NΗ					
R/W		R	20							R	W					
Initial value		(0							Don'i	care					

This register controls the vertical direction display size (height) of the L0 layer window. Setting value + 1 is the height.

186

L1	M (L1-layer N	100	de))					
	Register address	Di	ispl	layE	Bas	eAddress +	30 _H		
	Bit number	31	30	29	28	27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10	5 4 3 2 1 0
	Bit field name	L1C	L1YC	L1CS	L1IM	Reserved	L1W	R	eserved
	R/W								R0
	Initial value								0
			•	•					

1 1M (I 1-I ... ر م ام

Bit 23 to 16 L1W	L1 layer	memory	Width)
------------------	----------	--------	--------

Sets the memory width (stride) of the logic frame of the W layer in unit of 64 bytes

Bit 28 L1IM (L1 layer Interlace Mode)

Sets video capture mode when L1CS in capture mode

- 0: Normal mode
- 1: For non-interlace display, displays captured video graphics in WEAVE mode For interlace and video display, buffers are managed in frame units (pair of odd field and even field).

Bit 29 L1CS (L1 layer Capture Synchronize)

Sets whether the layer is used as normal display layer or as video capture

- 0: Normal mode
- 1: Capture mode

Bit 30 L1YC (L1 layer YC mode) Sets color format of L1 layer The YC mode must be set for video capture. 0: RGB mode

1: YC mode

Bit 31 L1C (L1 layer Color mode) Sets color mode for L1 layer

- 0: Indirect color (8 bits/pixel) mode
- 1: Direct color (16 bits/pixel) mode

	ALCIN				
Register address	Displ	ayBaseAddi	ress +	· 120 _H	
Bit number	31-30	29 28 27 26	25-24	23 22 21 20	19-18-17-16-15-14-13-12-11-104-3-2-1-0
Bit field name	L1EC	Reserved	DM	L1PB	Reserved
R/W	RW	R0		RW	R0
Initial value		0			0

L1EM (L1 layer Extended Mode)

Bit 23 to 20 L1PB (L1 layer Palette Base)

Shows the value added to the index when subtracting palette of L1 layer. 16 times of setting value is added.

- Bit 25 to 24 L1DM (L1 layer Display Magnify Mode)
 - 00 Normal Mode (no scaling or shrink scaling)
 - 01 Reserved
 - 10 Magnify Scaling
 - 11 Reserved

Bit 31 to 30 L1EC (L1 layer Extended Color mode) Sets extended color mode for L1 layer

- 00 Mode determined by L1C
- 01 Direct color (24 bits/pixel) mode
- 1x Reserved

L1DA (L1 layer Display Address)

Register address	DisplayBaseAdd	ress + 34 _H
Bit number	31 30 29 28 27 26	25:24:23:22-21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
Bit field name	Reserved	L1DA
R/W	R0	RW
Initial value	0	Don't care

This register sets the display origin address of the L1 layer. For the direct color mode (16 bits/pixel), the lower 1 bit is "0", and this register is treated as being aligned in 2 bytes. Wraparound processing is not performed for the L1 layer, so the frame origin linear address and display position (X coordinates, and Y coordinates) are not specified.

CBDA1 (Capture Buffer Display Address 1)

Register address	DisplayBas	eAddress + 0x38
Bit No.	$31\ 30\ 29\ 28$	27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit field name	Reserve	CBDA1
R/W	R0	R
Initial value	0	Undefined

This register is a read-only register which is only enabled when the L1CS bit is 1 and the L1IM bit is also 1. This register indicates the starting address of an even field of the capture screen.

		r			,											
Register address	Disp	layBa	seAdd	Iress +	- 124⊦	ı (Disp	olayBa	seAd	dress	+ 18 _H)					
Bit number	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						0								
Bit field name		Reserved				Reserved L1WX										
R/W		R0						RW								
Initial value		0								Don'i	care					

L1WX (L1 layer Window position X)

This register sets the X coordinates of the display position of the L1 layer window. This register is placed in two address spaces. The parenthesized address is the register address to maintain compatibility with previous products. The same applies to L1WY, L1WW, and L1WH.

L1WY (L1 layer Window position Y)

Register address	Displ	ayBas	seAdd	ress +	- 126 _H	ı (Disp	layBa	seAdo	dress	+ 1A _H)					
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Reserved L1WY														
R/W		R0 RW														
Initial value		(C							Don't	care					

This register sets the Y coordinates of the display position of the L1 layer window.

L1WW (L1 layer Window Width)

Register address	Displ	ayBa	seAdd	ress +	- 128⊦	ı (Disp	olayBa	iseAdo	dress	+ 1C _H)					
Bit number	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1					0									
Bit field name		Reserved L1WW														
R/W		R0					RW									
Initial value		(0							Don't	care					

This register controls the horizontal direction display size (width) of the L1 layer window. Do not specify "0".

L1WH (L1 layer Window Height)

Register address	Displ	ayBa	seAdd	ress +	- 12A⊦	I ((Dis	playB	aseAo	ddress	s + 1E	н)					
Bit number	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1					0									
Bit field name		Reserved				L1WH										
R/W		R0				R0 RW										
Initial value		(0							Don't	care					

This register controls the vertical direction display size (height) of the L1 layer window. Setting value + 1 is the height.

.2M (L2 layer N	lode)				
Register address	Display	BaseAddress +	· 40 _H		
Bit number	31 30 29	28 27 24	23 22 21 20 19 18 17 1	6 15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0
	L2C L2FLP	Reserved	L2W	Reserved	L2H
R/W	RW RW	R0	RW	R0	RW
Initial value		0	Don't care	0	Don't care
Bit 11 to 0		L2 layer Heigh		he I 2 laver in n	ixel units. Setting value + 1 is
	the h	eight	-		
Bit 23 to 16	L2W	(L2 layer memo	ory Width)		
	Sets	the memory wid	of the logic	c frame of the L2	2 layer in 64-byte units
Bit 30 and 29		P (L2 layer Flip flipping mode fo Displays fram	or L2 layer		
	01	Displays fram	e 1		
	10	Switches fram	e 0 and 1 alternately	for display	
	11	Reserved			
Bit 31		L2 layer Color			
	0	Indirect color	(8 bits/pixel) mode		
	1	Direct color (1	6 bits/pixel) mode		

L2M (L2 laver Mode)

EM (L2 layer E	Extenc	led Mode)				
Register address	Displa	ayBaseAddress +	- 130 _H			
Bit number	31:30	29-28-27-26-25-24	23:22:21:20	19:18:17:16:15:14:13:12:11:10: 4:3:2	1	0
Bit field name	L2EC	Reserved	L2PB	Reserved	L2OM	L2WP
R/W	RW	R0	RW	R0	RW	RW
Initial value	00	0	0	0	0	0
Bit 0		/P (L2 layer Winc				
	0			/ (ML layer supported)		
	•					
	1	Window display	/			
Bit 1	L2OI	M (L2 layer Overl	ay Mode)			
	Sele	cts the overlay m	ode for L2 I	ayer		
	0	Compatibility m	ode			
	1	Extended mode	e			
Bit 23 to 20	L2PE	3 (L2 layer Palett	e Base)			
		ws the value adde		dex when subtracting palette of L2 layer. 16 ti	mes o	of
Bit 31 and 30	L2E0	C (L2 layer Exten	ded Color n	node)		
	Sets	extended color n	node for L2	layer		
	00	Mode determin	ed by L2C			
	01	Direct color (24	bits/pixel)	mode		
	1x	Reserved				

L2EM (L2 layer Extended Mode)

L2OA0 (L2 layer Origin Address 0)

Register address	DisplayBaseAdd	ress + 44 _H								
Bit number	31 30 29 28 27 26	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
Bit field name	Reserved	Reserved L2OA0								
R/W	R0	RW	R0							
Initial value	0	Don't care	0000							

This register sets the origin address of the logic frame of the L2 layer in frame 0. Since lower 4 bits are fixed to "0", this address is 16-byte aligned.

L2DA0 (L2 layer Display Address 0)

Register address	DisplayBaseAdd	iress + 48 _H							
Bit number	31 30 29 28 27 26	25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0							
Bit field name	Reserved	L2DA0							
R/W	R0	RW							
Initial value	0	0 Don't care							

This register sets the origin address of the L2 layer in frame 0. For the direct color mode (16 bits/pixel), the lower 1 bit is "0" and this address is 2-byte aligned.

L2OA1 (L2 layer Origin Address 1)

Register address	DisplayBaseAdd	ress + 4C _H								
Bit number	31 30 29 28 27 26	25-24 23-22-21-20-19-18-17-16-15-14-13-12-11-10-9-8-7-6-5-4	3 2 1 0							
Bit field name	Reserved	Reserved L2OA1								
R/W	R0	RW	R0							
Initial value	0	0 Don't care 0000								

This register sets the origin address of the logic frame of the L2 layer in frame 1. Since lower 4-bits are fixed to "0", this address is 16-byte aligned.

L2DA1 (L2 layer Display Address 1)

Register address	DisplayBaseAdd	Iress + 50 _H
Bit number	31 30 29 28 27 26	25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
Bit field name	Reserved	L2DA1
R/W	R0	RW
Initial value	0	Don't care

This register sets the origin address of the L2 layer in frame 1. For the direct color mode (16 bits/pixel), the lower 1 bit is "0" and this address is 2-byte aligned.

L2DX (L2 layer Display position X)

Register address	Displ	layBa	seAdd	ress +	⊦ 54 _H																					
Bit number	15	14	13	11	-	10	÷	9	-	8	÷	7	6	-	5	-	4	-	3	-	2	-	1	-	0	
Bit field name		Reserved L2DX																								
R/W		R												R٧	/											
Initial value		(Dor	n't o	care	;										

This register sets the display starting position (X coordinates) of the L2 layer on the basis of the origin of the logic frame in pixels.

L2DY (L2 layer Display position Y)

Register address	Displ	ayBa	seAdd	ress +	- 56 _H														
Bit number	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																	
Bit field name		Reserved										L	2D	Y					
R/W		R0											R٧	/					
Initial value		0										Dor	n't o	care					

This register sets the display starting position (Y coordinates) of the L2 layer on the basis of the origin of the logic frame in pixels.

L2WX (L2 layer Window position X)

Register address	Displ	layBa	seAdd	Iress +	- 134 _H	I										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved						L2\	NX						
R/W		R0								R	W					
Initial value		(Don't	care							

This register sets the X coordinates of the display position of the L2 layer window.

L2WY (L2 layer Window position Y)

Register address	Displ	ayBas	seAdd	ress +	- 136 _⊦	l										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L2	WY					
R/W		R0								R	W					
Initial value		0								Don'i	t care					

This register sets the Y coordinates of the display position of the L2 layer window.

L2WW (L2 layer Window Width)

Register address	Displ	ayBa	seAdd	ress +	- 138 _⊦	I										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L2\	VW					
R/W		F	20							R	W					
Initial value		(0							Don't	care					

This register controls the horizontal direction display size (width) of the L2 layer window. Do not specify "0".

L2WH (L2 layer Window Height)

Register address	Displ	layBa	seAdd	ress +	- 13A⊦	1										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L2\	NΗ					
R/W		R0								R	W					
Initial value		0								Don't	care					

This register controls the vertical direction display size (height) of the L2 layer window. Setting value + 1 is the height.

M (L3 layer N	lod	le)				
Register address	Di	splay	BaseAddress +	- 58 _H		
Bit number	31	30 29	28-27-26-25-24	23 22 21 20 19 18 17 16	15 14 13 12	11.10.9.8.7.6.5.4.3.2.1.0
Bit field name	L3C	L3FLP	Reserved	L3W	Reserved	L3H
R/W	RW	R0	R0	RW	R0	RW
Initial value	0	0	0	Don't care	0	Don't care
Bit 11 to 0			L3 layer Heigh		e L3 layer in	pixel units. Setting value + 1 is
Bit 23 to 16		the he	eight (L3 layer mem	ory Width)	·	
BIL 23 10 10			· ·	•		
		Sets	the memory wi	dth (stride) of the logic	frame of the	L3 layer in 64-byte units
Bit 30 and 29			P (L3 layer Flip			
			flipping mode f	•		
		00	Displays fram	e 0		
		01	Displays fram	e 1		
		10	Switches fram	ne 0 and 1 alternately fo	or display	
		11	Reserved			
Bit 31		L3C (L3 layer Color	mode)		
		Sets	the color mode	for L3 layer		
		0		(8 bits/pixel) mode		
		1	Direct color (1	6 bits/pixel) mode		

L3M (L3 layer Mode)

Register address	Displ	ayBaseAddress +	+ 140 _H			
Bit number	31:30	29 28 27 26 25 24	23 22 21 20	19:18:17:16:15:14:13:12:11:10: 4:3:2	1	0
Bit field name	L3EC	Reserved	L3PB	Reserved	L3OM	L3WP
R/W	RW	R0	RW	R0	RW	RW
Initial value	00	0	0	0		0
Bit 0		WP (L3 layer Win ects the display p				
	0	Compatibility m	ode display	/ (MR layer supported)		
	1	Window display				
Bit 1	L3C	DM (L3 layer Over	lay Mode)			
	Sel	ects the overlay n	node for L3	layer		
	0	Compatibility m	iode			
	1	Extended mode	e			
Bit 23 to 20	L3F	PB (L3 layer Palet	te Base)			
		ows the value add ing value is adde		dex when subtracting palette of L3 layer. 16 ti	mes	of
Bit 31 and 30	L3E	EC (L3 layer Exter	nded Color i	mode)		
	Set	s extended color	mode for L3	3 layer		
	00	Mode determin	ed by L3C			
	01	Direct color (24	bits/pixel)	mode		
	1x	Reserved				

L3EM (L3 layer Extended Mode)

196

L3OA0 (L3 layer Origin Address 0)

Register address	DisplayBaseAdd	Iress + 5C _H									
Bit number	31 30 29 28 27 26	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Bit field name	Reserved	Reserved L3OA0									
R/W	R0	RW	R0								
Initial value	0	Don't care	0000								

This register sets the origin address of the logic frame of the L3 layer in frame 0. Since lower 4 bits are fixed to "0", this address is 16-byte aligned.

L3DA0 (L3 layer Display Address 0)

Register address	DisplayBaseAdd	Iress + 60 _H
Bit number	31 30 29 28 27 26	25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
Bit field name	Reserved	L3DA0
R/W	R0	RW
Initial value	0	Don't care

This register sets the origin address of the L3 layer in frame 0. For the direct color mode (16 bits/pixel), the lower 1 bit is "0" and this address is 2-byte aligned.

L3OA1 (L3 layer Origin Address 1)

Register address	DisplayBaseAdo	Iress + 64 _H								
Bit number	31 30 29 28 27 26	25-24 23-22-21-20-19-18-17-16-15-14-13-12-11-10-9-8-7-6-5-4	3-2-1-0							
Bit field name	Reserved	Reserved L3OA1								
R/W	R0	RW	R0							
Initial value	0	Don't care	0000							

This register sets the origin address of the logic frame of the L3 layer in frame 1. Since lower 4-bits are fixed to "0", this address is 16-byte aligned.

L3OA1 (L3 layer Display Address 1)

Register address	DisplayBaseAdd	Iress + 68 _H
Bit number	31 30 29 28 27 26	25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
Bit field name	Reserved	L3DA1
R/W	R0	RW
Initial value	0	Don't care

This register sets the origin address of the L3 layer in frame 1. For the direct color mode (16 bits/pixel), the lower 1 bit is "0" and this address is 2-byte aligned.

L3DX (L3 layer Display position X)

Register address	Disp	isplayBaseAddress + 6C _H																								
Bit number	15	14	13	12	11	Ē	10	-	9	-	8	÷	7	6	-	5	-	4	-	3	-	2	-	1	-	0
Bit field name		Rese											L	3D	Х											
R/W		R0													R٧	/										
Initial value		0												Dor	n't o	care	;									

This register sets the display starting position (X coordinates) of the L3 layer on the basis of the origin of the logic frame in pixels.

L3DY (L3 layer Display position Y)

Register address	Displ	ayBas	seAdd	ress +	· 6E _H	I													
Bit number	15	14	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																
Bit field name		Reserved										L	.3D	Y					
R/W		R0											R٧	/					
Initial value		0										Dor	n't d	care					

This register sets the display starting position (Y coordinates) of the L3 layer on the basis of the origin of the logic frame in pixels.

L3WX (L3 layer Window position X)

Register address	Displ	layBa	seAdd	ress +	- 144 _H	I										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Reserved								L3\	NX					
R/W		R0								R	W					
Initial value		(0							Don't	care					

This register sets the X coordinates of the display position of the L3 layer window.

L3WY (L3 layer Window position Y)

Register address	Displ	ayBas	seAdd	ress +	- 146 _⊦	l							
Bit number	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
Bit field name		Reserved L3WY											
R/W		R	20						R	W			
Initial value		0							Don'i	care			

This register sets the Y coordinates of the display position of the L3 layer window.

L3WW (L3 layer Window Width)

Register address	Displ	isplayBaseAddress + 148 _H														
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L3V	VW					
R/W		F	20							R	W					
Initial value		0								Don't	care					

This register controls the horizontal direction display size (width) of the L3 layer window. Do not specify "0".

L3WH (L3-layer Window Height)

Register address	Displ	layBa	seAdd	ress +	- 14A⊦	4										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Reserved								L3\	NΗ					
R/W		R0								R	W					
Initial value		0 0								Don'i	care					

This register controls the vertical direction display size (height) of the L3 layer window. Setting value + 1 is the height.

.4M (L4 layer N	lode)				
Register address	Display	BaseAddress +	70 _H		
Bit number	31 30 29	28 27 26 25 24	23 22 21 20 19 18 17 1	6 15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0
Bit field name	L4C L4FLP	Reserved	L4W	Reserved	L4H
R/W	RW RW	R0	RW	R0	RW
Initial value		0	Don't care	0	Don't care
Bit 11 to 0	Spec	(L4 layer Heigh ifies the height eight		he L4 layer in p	ixel units. Setting value + 1 is
Bit 23 to 16		(L4 layer memo the memory wie	ory Width) dth (stride) logic frame	e of the L4 layer	in 64-byte units
Bit 30 and 29	L4FL	.P (L4 layer Flip	mode)		
	Sets	flipping mode for	or L4 layer		
	00	Displays fram	e 0		
	01	Displays fram	e 1		
	10	Switches fram	e 0 and 1 alternately	for display	
	11	Reserved			
Bit 31	L4C	(L4 layer Color	mode)		
	Sets	the color mode	for L4 layer		
	0	Indirect color	8 bits/pixel) mode		
	1	Direct color (1	6 bits/pixel) mode		

L4M (L4 layer Mode)

Register address	Displ	ayBaseAddress +	- 150 _H		
Bit number	31:30	29 28 27 26 25 24	23:22:21:20:19:18:17:16:15:14:13:12:11:10: 4:3:2	1	0
Bit field name	L4EC	Reserved	Reserved	L4OM	L4WF
R/W	RW	R0	R0	RW	RW
Initial value	00	0	0		0
	Sele 0 1		osition of L4 layer node display (BL layer supported) y		
Bit 1	L4C	M (L4 layer Over	lay Mode)		
	Sele	ects the overlay n	node for L4 layer		
	0	Compatibility n	aede		

L4EM (L4 laver Extended Mode)

- 0 Compatibility mode
- 1 Extended mode

Bit 31 and 30 L4EC (L4 layer Extended Color mode) Sets extended color mode for L4 layer

- 00 Mode determined by L4C
- 01 Direct color (24 bits/pixel) mode
- Reserved 1x

L4OA0 (L4 layer Origin Address 0)

Register address	DisplayBaseAdd	ress + 74 _H									
Bit number	31 30 29 28 27 26	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Bit field name	Reserved										
R/W	R0	RW	R0								
Initial value	0	Don't care	0000								

This register sets the origin address of the logic frame of the L4 layer in frame 0. Since lower 4 bits are fixed to "0", this address is 16-byte aligned.

L4DA0 (L4 layer Display Address 0)

Register address	DisplayBaseAdd	Iress + 78 _H
Bit number	31 30 29 28 27 26	25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
Bit field name	Reserved	L4DA0
R/W	R0	RW
Initial value	0	Don't care

This register sets the origin address of the L4 layer in frame 0. For the direct color mode (16 bits/pixel), the lower 1 bit is "0" and this address is 2-byte aligned.

L4OA1 (L4 layer Origin Address 1)

Register address	DisplayBaseAdd	ress + 7C _H									
Bit number	31 30 29 28 27 26	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Bit field name	Reserved	Reserved L4OA1									
R/W	R0	RW	R0								
Initial value	0	Don't care	0000								

This register sets the origin address of the logic frame of the L4 layer in frame 1. Since lower 4-bits are fixed to "0", this address is 16-byte aligned.

L4DA1 (L4 layer Display Address 1)

Register address	DisplayBaseAdd	ress + 80 _H								
Bit number	31 30 29 28 27 26	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
Bit field name	Reserved	L4DA1								
R/W	R0	RW								
Initial value	0	Don't care								

This register sets the origin address of the L4 layer in frame 1. For the direct color mode (16 bits/pixel), the lower 1 bit is "0" and this address is 2-byte aligned.

L4DX (L4 layer Display position X)

Register address	Displ	layBas	seAdd	ress +	⊦ 84 _H																						
Bit number	15	14	13	12	11	Ē	10	-	9	-	8	÷	7	-	6	-	5	-	4	-	3	-	2	-	1	-	0
Bit field name		Reserved L4DX																									
R/W		R													R٧	/											
Initial value		(Dor	n't o	care	;										

This register sets the display starting position (X coordinates) of the L4 layer on the basis of the origin of the logic frame in pixels.

L4DY (L4 layer Display position Y)

Register address	Displ	ayBas	seAdd	ress +	- 86 _H														
Bit number	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																	
Bit field name		Rese									L	4D	Y						
R/W		R0											R٧	/					
Initial value		0										Dor	n't d	care					

This register sets the display starting position (Y coordinates) of the L4 layer on the basis of the origin of the logic frame in pixels.

L4WX (L4 layer Window position X)

Register address	Displ	ayBa	seAdd	ress +	- 154 _H	I										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Reserved								L4\	NX					
R/W		R0								R	W					
Initial value		(0							Don't	care					

This register sets the X coordinates of the display position of the L4 layer window.

L4WY (L4 layer Window position Y)

Register address	Displ	ayBa	seAdd	lress +	- 156 _H	l										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L4\	NY					
R/W		R	20							R	W					
Initial value		(C							Don'i	care					

This register sets the Y coordinates of the display position of the L4 layer window.

L4WW (L4 layer Window Width)

Register address	Displ	ayBa	seAdd	ress +	- 158 _⊦	I										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L4V	VW					
R/W		F	20							R	W					
Initial value		(C							Don't	care					

This register controls the horizontal direction display size (width) of the L4 layer window. Do not specify "0".

L4WH (L4 layer Window Height)

Register address	Displ	layBa	seAdd	ress +	- 15A	4										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L4\	NΗ					
R/W		R0								R	W					
Initial value		()							Don'i	care					

This register controls the vertical direction display size (height) of the L4 layer window. Setting value + 1 is the height.

.5M (L5 layer N	lode)				
Register address	Display	BaseAddress +	· 88 _H		
Bit number	31 30 29	28 27 26 25 24	23 22 21 20 19 18 17 1	6 15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0
Bit field name	L5C L5FLP	Reserved	L5W	Reserved	L5H
R/W	RW RW	R0	RW	R0	RW
Initial value		0	Don't care	0	Don't care
Bit 11 to 0		(L5 layer Heigh		he I 5 laver in pi	xel units. Setting value + 1 is
	the h	•			
Bit 23 to 16	L5W	(L5 layer memo	ory Width)		
	Sets	the memory wi	dth (stride) logic frame	e of the L5 layer	in 64-byte units
Bit 30 and 29	L5FL	P (L5 layer Flip	mode)		
	Sets	flipping mode f	or L5 layer		
	00	Displays fram	e 0		
	01	Displays fram	e 1		
	10	Switches fram	e 0 and 1 alternately	for display	
	11	Reserved			
Bit 31	L5C	(L5 layer Color	mode)		
	Sets	the color mode	for L5 layer		
	0	Indirect color	(8 bits/pixel) mode		
	1	Direct color (1	6 bits/pixel) mode		

L5M (L5 layer Mode)

		aca meac,			
Register address	Displ	ayBaseAddress +	· 110 _H		
Bit number	31:30	29 28 27 26 25 24	23:22:21:20:19:18:17:16:15:14:13:12:11:10: 4:3:2	1	0
Bit field name	L5EC	Reserved	Reserved	L5OM	L5WP
R/W	RW	R0	R0	RW	RW
Initial value	00	0	0		0

L5EM (L5 layer Extended Mode)

Bit 0 L5 WP (L5 layer Window Position enable) Selects the display position of L5 layer

- 0 Compatibility mode display (BR layer supported)
- 1 Window display

Bit 1 L5OM (L5 layer Overlay Mode)

Selects the overlay mode for L5 layer

- 0 Compatibility mode
- 1 Extended mode

Bit 31 to 30 L5EC (L5 layer Extended Color mode) Sets extended color mode for L5 layer

- 00 Mode determined by L5C
- 01 Direct color (24 bits/pixel) mode
- 1x Reserved

L5OA0 (L5 layer Origin Address 0)

Register address	DisplayBaseAdd	ress + 8C _H									
Bit number	31 30 29 28 27 26	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Bit field name	Reserved										
R/W	R0	RW	R0								
Initial value	0	Don't care	0000								

This register sets the origin address of the logic frame of the L5 layer in frame 0. Since lower 4 bits are fixed to "0", this address is 16-byte aligned.

L5DA0 (L5 layer Display Address 0)

Register address	DisplayBaseAdd	ress + 90 _H
Bit number	31 30 29 28 27 26	25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
Bit field name	Reserved	L5DA0
R/W	R0	RW
Initial value	0	Don't care

This register sets the origin address of the L5 layer in frame 0. For the direct color mode (16 bits/pixel), the lower 1 bit is "0" and this address is 2-byte aligned.

L5OA1 (L5 layer Origin Address 1)

Register address	DisplayBaseAdd	ress + 94 _H									
Bit number	31 30 29 28 27 26	29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Bit field name	Reserved	Reserved L5OA1									
R/W	R0	RW	R0								
Initial value	0	Don't care	0000								

This register sets the origin address of the logic frame of the L5 layer in frame 1. Since lower 4-bits are fixed to "0", this address is 16-byte aligned.

L5DA1 (L5 layer Display Address 1)

Register address	DisplayBaseAdd	ress + 98 _H							
Bit number	31 30 29 28 27 26	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
Bit field name	Reserved	L5DA1							
R/W	R0	RW							
Initial value	0	Don't care							

This register sets the origin address of the L5 layer in frame 1. For the direct color mode (16 bits/pixel), the lower 1 bit is "0" and this address is 2-byte aligned.

L5DX (L5 layer Display position X)

Register address	Displ	layBas	seAdd	ress +	- 9C⊦	ł																					
Bit number	15	14	13	12	11	Ē	10	-	9	-	8	÷	7	-	6	-	5	-	4	-	3	-	2	-	1	-	0
Bit field name		Rese	erved												L	5D	Х										
R/W		R	20													R٧	/										
Initial value		(0												Dor	n't d	care	;									

This register sets the display starting position (X coordinates) of the L5 layer on the basis of the origin of the logic frame in pixels.

L5DY (L5 layer Display position Y)

Register address	Displ	ayBas	seAdd	ress +	9E _H	I																					
Bit number	15	14	13	12	11		10	-	9	-	8	-	7	:	6	:	5	-	4	-	3	:	2	:	1	:	0
Bit field name		Rese	erved												L	.5D	Y										
R/W		R	20													R٧	/										
Initial value		0 R0													Doi	n't o	care										

This register sets the display starting position (Y coordinates) of the L5 layer on the basis of the origin of the logic frame in pixels.

L5WX (L5 layer Window position X)

Register address	Displ	layBa	seAdd	ress +	- 164⊦	I										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L5\	NX					
R/W		R0 RW														
Initial value		(0							Don't	care					

This register sets the X coordinates of the display position of the L5 layer window.

L5WY (L5 layer Window position Y)

Register address	Displ	ayBas	seAdd	Iress +	+ 166⊦	I										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L5\	NY					
R/W		R	20							R	W					
Initial value		()							Don'i	care					

This register sets the Y coordinates of the display position of the L5 layer window.

L5WW (L5 layer Window Width)

Register address	Displ	layBa	seAdd	ress +	- 168⊦	ł										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Rese	erved							L5\	VW					
R/W		F	20							R	W					
Initial value		(0							Don't	care					

This register controls the horizontal direction display size (width) of the L5 layer window. Do not specify "0".

L5WH (L5 layer Window Height)

Register address	Displ	ayBa	seAdd	ress +	- 16A	4										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Reserved L5WH														
R/W		R0 RW														
Initial value		()							Don'i	care					

This register controls the vertical direction display size (height) of the L5 layer window. Setting value + 1 is the height.

	Tans	pare			,																				
Register address	Displ	ayBas	seAdd	ress +	- A0 _H																				
Bit number	15	14	13	12	11	- 1	10	-	9	8	7	-	6	-	5	-	4	÷	3	-	2	:	1	:	0
Bit field name			R	eserve	ed					CUZT							С	UT	С						
R/W				R0						RW							F	٦N	/						
Initial value				0						Don't care							Dor	ı't c	are	;					

CUTC (Cursor Transparent Control)

Bit 7 to 0 CUTC (Cursor Transparent Code)

Sets color code handled as transparent code

Bit 8 CUZT (Cursor Zero Transparency)

Defines handling of color code 0

- 0 Code 0 as non-transparency color
- 1 Code 0 as transparency color

CPM (Cursor Priority Mode)

Register address	DisplayBa	seAddress -	+ A2 _H										
Bit number	7 6 5 4 3 2 1 0												
Bit field name	Reserved CEN1 CEN0 Reserved CUO1 CUO0												
R/W	F	RO	RW	RW	F	0	RW	RW					
Initial value	(0	0	0	()	0	0					

This register controls the display priority of cursors. Cursor 0 is always preferred to cursor 1.

Sets display priority between cursor 0 and pixels of Console layer

- 0 Puts cursor 0 at lower than L0 layer.
- 1 Puts cursor 0 at higher than L0 layer.
- Bit 1 CUO1 (Cursor Overlap 1)

Sets display priority between cursor 1 and C layer

- 0 Puts cursor 1 at lower than L0 layer.
- 1 Puts cursor 1 at lower than L0 layer.

Bit 4 CEN0 (Cursor Enable 0)

Sets enabling display of cursor 0

- 0 Disabled
- 1 Enabled
- Bit 5 CEN1 (Cursor Enable 1) Sets enabling display of cursor 1
 - 0 Disabled
 - 1 Enabled

CUOA0 (Cursor-0 Origin Address)

Register address	DisplayBaseAdd	Iress + A4 _H	
Bit number	31 30 29 28 27 26	25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10:9-8-7-6-5-4	3 2 1 0
Bit field name	Reserved	CUOA0	
R/W	R0	RW	R0
Initial value	0	Don't care	0000

This register sets the start address of the cursor 0 pattern. Since lower 4 bits are fixed to "0", this address is 16-byte aligned.

CUX0 (Cursor-0 X position)

Register address	Displ	layBa	seAdd	ress +	- A8н																					
Bit number	15	14	13	12	11	-	10	-	9	-	8	-	7	-	6	-	5	-	4	-	3	2	-	1	-	0
Bit field name		Rese	erved												С	UX	(0									
R/W		R0													F	R٧	/									
Initial value		()												Dor	n't c	care									

This register sets the display position (X coordinates) of the cursor 0 in pixels. The reference position of the coordinates is the top left of the cursor pattern.

CUY0 (Cursor-0 Y position)

Register address	DisplayBaseAddress + Aa _H
Bit number	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit field name	Reserved CUY0
R/W	R0 RW
Initial value	0 Don't care

This register sets the display position (Y coordinates) of the cursor 0 in pixels. The reference position of the coordinates is the top left of the cursor pattern.

208

CUOA1 (Cursor-1 Origin Address)

Register address	DisplayBaseAdd	ress + AC _H	
Bit number	31 30 29 28 27 26	25:24 23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4	3 2 1 0
Bit field name	Reserved	CUOA1	
R/W	R0	RW	R0
Initial value	0	Don't care	0000

This register sets the start address of the cursor 1 pattern. Since lower 4 bits are fixed to "0", this address is 16-byte aligned.

CUX1 (Cursor-1 X position)

Register address	Displ	splayBaseAddress + B0 _H																									
Bit number	15	14	13	12	11	-	10	:	9	:	8	-	7	-	6	-	5	-	4	-	3	:	2	-	1	:	0
Bit field name		Reserved				ed CUX1																					
R/W		R0			0 RW																						
Initial value		0			Don't care																						

This register sets the display position (X coordinates) of the cursor 1 in pixels. The reference position of the coordinates is the top left of the cursor pattern.

CUY1 (Cursor-1 Y position)

Register address	isplayBaseAddress + B2 _H								
Bit number	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
Bit field name	Reserved CUY1								
R/W	R0 RW								
Initial value	0 Don't care								

This register sets the display position (Y coordinates) of the cursor 1 in pixels. The reference position of the coordinates is the top left of the cursor pattern.

209

IVI									
	Register address	Displ	ayBaseAddress + 170 _H						
	Bit number	31	30 29 28 24 23 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0				
	Bit field name	MDen	reserve	SC1en	SC0en				
	R/W	RW	R0	RW	RW				
	Initial value	0	0	Х	Х				

MDC (Multi Display Control)

This register controls dual display mode.

Bit 0	SC0en0 (screen 0 enable 0)
	0: L0 is not included into screen 0
	1: L0 is included into screen 0
Bit 1	SC0en1 (screen 0 enable 1)
	0: L1 is not included into screen 0
	1: L1 is included into screen 0
ξ	
Bit 5	SC0en5 (screen 0 enable 5)
	0: L5 is not included into screen 0
	1: L5 is included into screen 0
Bit 6	SC0en6 (screen 0 enable 6)
	0: Cursor0 is not included into screen 0
	1: Cursor0 is included into screen 0
Bit 7	SC0en7 (screen 0 enable 7)
	0: Cursor1 is not included into screen 0
	1: Cursor1 is included into screen 0
Bit 8	SC1en0 (screen 1 enable 0)
	0: L0 is not included into screen 1
	1: L0 is included into screen 1
Bit 9	SC1en1 (screen 1 enable 1)
	0: L1 is not included into screen 1
	1: L1 is included into screen 1
\$	
Bit 13	SC1en5 (screen 1 enable 5)
	0: L5 is not included into screen 1
	1: L5 is included into screen 1
Bit 14	SC1en6 (screen 1 enable 6)
MB86276 'LIME Rev1.1a	GDC Specifications 210

- 0: Cursor 0 is not included into screen 1
- 1: Cursor 0 is included into screen 1

Bit 15	SC1en7 (screen 1 enable 7)	
	· · · · · · · · · · · ·	

- 0: Cursor 1 is not included into screen 1
- 1: Cursor 1 is included into screen 1
- Bit 31 MDen (multi display enable) This enables multi or dual display mode
 - 0: Single display mode
 - 1: Dual display mode

(Display Lag													
Register address	DisplayBaseAddres	DisplayBaseAddress + 180 _H											
Bit number	31:30:29: 25:24	23	22 21 20	19	18-17-16	15	14-13-12	11	10:9:8	7	6 5 4	3	2 1 0
Bit field name	Reserved		DLS5 DLS4			DLS3		DLS2	DLS1		DSL0		
R/W	R0	R0	RW	R0	RW	R0	RW	R0	RW	R0	RW	R0	RW
Initial value			101		100		011		010		001		000

DLS (Display Layer Select)

This register defines the blending sequence.

Bit 3 to 0	DSL0 (Display Layer Select 0)
	Selects the top layer subjected to blending.
	0000 L0 layer
	0001 L1 layer
	: :
	0101 L5 layer
	0110 Reserved
	: :
	0110 Reserved
	0111 Not selected
Bit 7 to 4	DSL1 (Display Layer Select 1)
	Selects the second layer subjected to blending. The bit values are the same as DSL0.
Bit 11 to 8	DSL2 (Display Layer Select 2)
	Selects the third layer subjected to blending. The bit values are the same as DSL0.
Bit 15 to 12	DSL3 (Display Layer Select 3)
	Selects the fourth layer subjected to blending. The bit values are the same as DSL0.
Bit 19 to 16	DSL4 (Display Layer Select 4)
	Selects the fifth layer subjected to blending. The bit values are the same as DSL0.
	Selects the man layer subjected to blending. The bit values are the same as DSLU.
Bit 23 to 20	DSL5 (Display Layer Select 5)
2.1.20 10 20	

Selects the bottom layer subjected to blending. The bit values are the same as DSL0.

212

 bee (biopia) baokground eeler)										
Register address	DisplayBaseAddres	s + 184 _H								
Bit number	31:30-29 25:24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0						
Bit field name	Reserved	DBGR	DBGG	DBGB						
R/W	R0									
Initial value										

DBGC (Display Background Color)

This register specifies the color to be displayed in areas outside the display area of each layer on the window.

Bit 7 to 0	DBGB (Display Background Blue)							
	Specifies the blue level of the background color.							
Bit 15 to 8	DBGG (Display Background Green)							
	Specifies the green level of the background color.							
Bit 23 to 16	DBGR (Display Background Red)							
	Specifies the red level of the background color.							

L0BLD (L0 Blend)

	gister dress	DisplayBaseAddress + B4 _H						
Bit n	umber	31 30 29 28 20 19 18 17	16	15	14	13	12 11 10 9 8	7 6 5 4 3 2 1 0
Bit fiel	ld name	Reserved	L0BE	LOBS	L0BI	L0BP	Reserved	L0BR
R	R/W							
Initia	l value							

This register specifies the blend parameters for the L0 layer. This register corresponds to BRATIO or BMODE for previous products.

Bit 7 to 0 L0BR (L0 layer Blend Ratio)										
	Sets	the blend ratio. Basically, the blend ratio is setting value/256.								
Bit 13	3 L0BP (L0 layer Blend Plane)									
	Spe	cifies that the L5 layer is the blend plane.								
	0	Value of L0BR used as blend ratio								
	1	Pixel of L5 layer used as blend ratio								
Bit 14	L0B	l (L0 layer Blend Increment)								
	Sele	cts whether or not 1/256 is added when the blend ratio is not "0".								
	0	Blend ratio calculated as is								
	1	1/256 added when blend ratio \neq 0								
Bit 15	L0BS (L0 layer Blend Select)									
	Sele	Selects the blend calculation expression.								
	0	Upper image \times Blend ratio + Lower image \times (1 – Blend ratio)								
	1	Upper image \times (1 – Blend ratio) + Lower image \times Blend ratio								
Bit 16	L0BE (L0 layer Blend Enable)									
	This	bit enables blending.								
	0	Overlay via transparent color								
	1	Overlay via blending								

Before blending, the blend mode must be specified using L0BE, and alpha must also be enabled for L0 layer display data. For direct color, alpha is specified using the MSB of data; for indirect color, alpha is specified using the MSB of palette data.

L1BLD (L1 Blend)

Register address	DisplayBaseAddress + 188 _H							
Bit number	31-30-29-28: 20-19-18-17	16	15	14	13	12 11 10 9 8	7 6 5 4 3 2 1 0	
Bit field name	Reserved	L1BE	L1BS	L1BI	L1BP	Reserved	L1BR	
R/W								
Initial value								

This register specifies the blend parameters for the L1 layer.

Bit 7 to 0	L1BR (L1 layer Blend Ratio)						
	Sets the blend ratio. Basically, the blend ratio is setting value/256.						
Bit 13	L1BP (L1 layer Blend Plane)						
	Specifies that the L5 layer is the blend plane.						
	0	Value of L1BR used as blend ratio					
	1	Pixel of L5 layer used as blend ratio					
Bit 14	(L1 layer Blend Increment)						
BRTT	Selects whether or not 1/256 is added when the blend ratio is not "0".						
	0	Blend ratio calculated as is					
	1	1/256 added when blend ratio $\neq 0$					
Bit 15	L1BS	L1BS (L1 layer Blend Select)					
	Selects the blend calculation expression.						
	0	Upper image \times Blend ratio + Lower image \times (1 – Blend ratio)					
	1	Upper image \times (1 – Blend ratio) + Lower image \times Blend ratio					
Bit 16	L1BE (L1 layer Blend Enable)						
2.1.10	This bit enables blending.						
	0	Overlay via transparent color					
	1	Overlay via blending					

Before blending, the blend mode must be specified using L1BE, and alpha must also be enabled for L1 layer display data. For direct color, alpha is specified using the MSB of data; for indirect color, alpha is specified using the MSB of palette data.
L2BLD (L2 Blend)

Register address	DisplayBaseAddress + 18C _t	4					
Bit number	31:30:29:28: 20:19:18:17	16	15	14	13	12 11 10 9 8	7 6 5 4 3 2 1 0
Bit field name	Reserved	L2BE	L2BS	L2BI	L2BP	Reserved	L2BR
R/W							
Initial value							

This register specifies the blend parameters for the L2 layer.

Bit 7 to 0	L2BR (L2 layer Blend Ratio)
	Sets the blend ratio. Basically, the blend ratio is setting value/256.
Bit 13	L2BP (L2 layer Blend Plane)
	Specifies that the L5 layer is the blend plane.
	0 Value of L2BR used as blend ratio
	1 Pixel of L5 layer used as blend ratio
Bit 14	L2BI (L2 layer Blend Increment)
	Selects whether or not 1/256 is added when the blend ratio is not "0".
	0 Blend ratio calculated as is
	1 1/256 added when blend ratio \neq 0
Bit 15	L2BS (L2 layer Blend Select)
	Selects the blend calculation expression.
	0 Upper image × Blend ratio + Lower image × (1 – Blend ratio)
	1 Upper image \times (1 – Blend ratio) + Lower image \times Blend ratio
Bit 16	L2BE (L2 layer Blend Enable)
	This bit enables blending.
	0 Overlay via transparent color
	1 Overlay via blending

Before blending, the blend mode must be specified using L2BE, and alpha must also be enabled for L2 layer display data. For direct color, alpha is specified using the MSB of data; for indirect color, alpha is specified using the MSB of palette data.

L3BLD (L3 Blend)

Register address	DisplayBaseAddress + 190⊦	ł					
Bit number	31-30-29-28 20-19-18-17	16	15	14	13	12 11 10 9 8	7 6 5 4 3 2 1 0
Bit field name	Reserved	L3BE	L3BS	L3BI	L3BP	Reserved	L3BR
R/W							
Initial value							

This register specifies the blend parameters for the L3 layer.

Bit 7 to 0	L3BR (L3 layer Blend Ratio)	
	Sets the blend ratio. Basically, the blend ratio is setting value/256.	
Bit 13	L3BP (L3 layer Blend Plane)	
	Specifies that the L5 layer is the blend plane.	
	0 Value of L3BR used as blend ratio	
	1 Pixel of L5 layer used as blend ratio	
Bit 14	L3BI (L3 layer Blend Increment)	
	Selects whether or not 1/256 is added when the blend ratio is not "	0".
	0 Blend ratio calculated as is	
	1 1/256 added when blend ratio $\neq 0$	
Bit 15	L3BS (L3 layer Blend Select)	
	Selects the blend calculation expression.	
	0 Upper image × Blend ratio + Lower image × (1 – Blend ratio)
	1 Upper image \times (1 – Blend ratio) + Lower image \times Blend ratio	С
Bit 16	L3BE (L3 layer Blend Enable)	
	This bit enables blending.	
	0 Overlay via transparent color	
	1 Overlay via blending	

Before blending, the blend mode must be specified using L3BE, and alpha must also be enabled for L3 layer display data. For direct color, alpha is specified using the MSB of data; for indirect color, alpha is specified using the MSB of palette data.

L4BLD (L4 Blend)

Register address	DisplayBaseAddress + 194⊦	ł					
Bit number	31-30-29-28 20-19-18-17	16	15	14	13	12 11 10 9 8	7 6 5 4 3 2 1 0
Bit field name	Reserved	L4BE	L4BS	L4BI	L4BP	Reserved	L4BR
R/W							
Initial value							

This register specifies the blend parameters for the L4 layer.

Bit 7 to 0	L4BR (L4 layer Blend Ratio)	
	Sets the blend ratio. Basically, the blend ratio	is setting value/256.
Bit 13	L4BP (L4 layer Blend Plane)	
	Specifies that the L5 layer is the blend plane.	
	0 Value of L4BR used as blend ratio	
	1 Pixel of L5 layer used as blend ratio	
Bit 14	L4BI (L4 layer Blend Increment)	
	Selects whether or not 1/256 is added when th	e blend ratio is not "0".
	0 Blend ratio calculated as is	
	1 1/256 added when blend ratio \neq 0	
Bit 15	L4BS (L4 layer Blend Select)	
	Selects the blend calculation expression.	
	0 Upper image × Blend ratio + Lower image	ge \times (1 – Blend ratio)
	1 Upper image × (1 – Blend ratio) + Lowe	r image × Blend ratio
Bit 16	L4BE (L4 layer Blend Enable)	
	This bit enables blending.	
	0 Overlay via transparent color	
	1 Overlay via blending	

Before blending, the blend mode must be specified using L4BE, and alpha must also be enabled for L4 layer display data. For direct color, alpha is specified using the MSB of data; for indirect color, alpha is specified using the MSB of palette data.

L5BLD (L5 Blend)

Register address	DisplayBaseAddress + 198h					
Bit number	31:30-29:28: 21:20:19:18:17	16	15	14	13 12 11 10 9 8	7 6 5 4 3 2 1 0
Bit field name	Reserved	L5BE	L5BS	L5BI	Reserved	L5BR
R/W	R0	RW	RW	RW	R0	RW
Initial value		0	0	0		

This register specifies the blend parameters for the L5 layer.

Bit 7 to 0	L5BR (L5 layer Blend Ratio)
	Sets the blend ratio. Basically, the blend ratio is setting value/256.
Bit 14	L5BI (L5 layer Blend Increment) Selects whether or not 1/256 is added when the blend ratio is not "0". 0 Blend ratio calculated as is
	1 1/256 added when blend ratio $\neq 0$
Bit 15	L5BS (L5 layer Blend Select)
	Selects the blend calculation expression.
	0 Upper image × Blend ratio + Lower image × (1 – Blend ratio)
	1 Upper image × (1 – Blend ratio) + Lower image × Blend ratio
Bit 16	L5BE (L5 layer Blend Enable)
	This bit enables blending.

- 0 Overlay via transparent color
- 1 Overlay via blending

Before blending, the blend mode must be specified using L5BE, and alpha must also be enabled for L5 layer display data. For direct color, alpha is specified using the MSB of data; for indirect color, alpha is specified using the MSB of palette data.

-0	IC (LU layer	irans	spare	псу	Conti	UI)																				
	Register address	Displ	ayBa	seAdo	dress -	⊦ BCŀ	н																			
	Bit number	15	14	13	12	11	10) :	9	-	8	-	7	-	6	-	5	-	4	3	-	2	-	1	÷	0
	Bit field name	L0ZT										L	0T0	С												
	R/W	RW											RW	1												
	Initial value	0										Dor	n't c	are	;											

L0TC (L0 layer Transparency Control)

This register sets the transparent color for the L0 layer. Color set by this register is transparent in blend mode. When L0TC = 0 and L0ZT = 0, color 0 is displayed in black (transparent).

This register corresponds to the CTC register for previous products.

Bit 14 to 0 LOTC (L0 layer Transparent Color)

Sets transparent color code for the L0 layer. In indirect color mode (8 bits/pixel) bits 7 to 0 are used.

Bit 15 L0ZT (L0 layer Zero Transparency)

Sets handling of color code 0 in L0 layer

- 0: Code 0 as transparency color
- 1: Code 0 as non-transparency color

L2TC (L2 layer Transparency Control)

Register address	Displ	ayBas	seAdd	Iress +	- C2⊦	ł																					
Bit number	15	14	13	12	11	-	10	÷	9	-	8	-	7	-	6	-	5	-	4	-	3	÷	2	-	1	-	0
Bit field name	L2ZT											L	_2T(С													
R/W	RW												RW	1													
Initial value	0											Do	n't c	are	;												

This register sets the transparent color for the L2 layer.

When L2TC = 0 and L2ZT = 0, color 0 is displayed in black (transparent).

This register corresponds to the MLTC register for previous products.

Bit 14 to 0 L2TC (L2 layer Transparent Color)

Sets transparent color code for the L2 layer. In indirect color mode (8 bits/pixel) bits 7 to 0 are used.

Bit 15 L2ZT (L2 layer Zero Transparency)

Sets handling of color code 0 in L2 layer

- 0 Code 0 as transparency color
- 1 Code 0 as non-transparency color

	mana	spare	псуч	50110	UI)																					
Register address	Displ	ayBas	seAdd	ress +	- C0 _H	ł																				
Bit number	15	14	13	12	11	= 10) [9	-	8	-	7	-	6	÷	5	-	4	-	3	-	2	÷	1	÷	0
Bit field name	L3ZT										L	.3TC	С													
R/W	RW											RW	1													
Initial value	0										Dor	n't c	are	;												

L3TC (L3 layer Transparency Control)

This register sets the transparent color for the L3 layer. When L3TC = 0 and L3ZT = 0, color 0 is displayed in black (transparent).

This register corresponds to the MLTC register for previous products.

Bit 14 to 0 L3TC (L3 layer Transparent Color)

Sets transparent color code for the L3 layer. In indirect color mode (8 bits/pixel) bits 7 to 0 are used.

Bit 15 L3ZT (L3 layer Zero Transparency)

Sets handling of color code 0 in L3 layer

- 0 Code 0 as transparency color
- 1 Code 0 as non-transparency color

L0ETC (L0 layer Extend Transparency Control)

Register	Displ	avBaseAddres	ss + 1A0 ₄
address	2.00		
Bit number	31	30:29:28::24	23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
Bit field name	L0EZT	Reserved	LOETC
R/W	RW	R0	RW
Initial value	0	0	

This register sets the transparent color for the L0 layer. The 24 bits/pixel transparent color is set using this register. The lower 15 bits of this register are physically the same as L0TC. Also, L0ETZ is physically the same as L0TZ.

When LOETC = 0 and LOEZT = 0, color 0 is displayed in black (transparent).

- Bit 23 to 0 L0ETC (L0 layer Extend Transparent Color) Sets transparent color code for the L0 layer. In indirect color mode (8 bits/pixel) bits 7 to 0 are used.
- Bit 31 L0EZT (L0 layer Extend Zero Transparency) Sets handling of color code 0 in L0 layer
 - 0 Code 0 as transparency color
 - 1 Code 0 as non-transparency color

	C (ET layer Extend Transparency Control)						
Register address	Displ	isplayBaseAddress + 1A4 _H					
Bit number	31	31 -30:29:28: 24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0					
Bit field name	L1EZT	Reserved	L1ETC				
R/W	RW	R0	RW				
Initial value							

L1ETC (L1 layer Extend Transparency Control)

This register sets the transparent color for the L1 layer. When L1ETC = 0 and L1EZT = 0, color 0 is displayed in black (transparent).

For YCbCr display, transparent color checking is not performed; processing is always performed assuming that transparent color is not used.

- Bit 23 to 0 L1ETC (L1 layer Extend Transparent Color) Sets transparent color code for the L1 layer. In indirect color mode (8 bits/pixel) bits 7 to 0 are used.
- Bit 31 L1EZT (L1 layer Extend Zero Transparency)

Sets handling of color code 0 in L1 layer

- 0 Code 0 as transparency color
- 1 Code 0 as non-transparency color

L2ETC (L2 layer Extend Transparency Control)

Register address	Displ	isplayBaseAddress + 1A8 _H						
Bit number	31	31 :30:29:28:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9:8:7:6:5:4:3:2:1:0						
Bit field name	L2EZT	Reserved	L2ETC					
R/W	RW	R0	RW					
Initial value								

This register sets the transparent color for the L2 layer. The 24 bits/pixel transparent color is set using this register. The lower 15 bits of this register are physically the same as L2TC. Also, L2ETZ is physically the same as L2TZ.

When L2ETC = 0 and L2EZT = 0, color 0 is displayed in black (transparent).

- Bit 23 to 0 L2ETC (L2 layer Extend Transparent Color) Sets transparent color code for the L2 layer. In indirect color mode (8 bits/pixel) bits 7 to 0 are used.
- Bit 31 L2EZT (L2 layer Extend Zero Transparency)

Sets handling of color code 0 in L2 layer

- 0 Code 0 as transparency color
- 1 Code 0 as non-transparency color

To (Es layer Extend Transparency Control)						
Register address	Displ	DisplayBaseAddress + 1AC _H				
Bit number	31	30 29 28 24	23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0			
Bit field name	L3EZT	Reserved	L3ETC			
R/W	RW	R0	RW			
Initial value	0	0				

L3ETC (L3 layer Extend Transparency Control)

This register sets the transparent color for the L3 layer. The 24 bits/pixel transparent color is set using this register. The lower 15 bits of this register are physically the same as L3TC. Also, L3ETZ is physically the same as L3TZ.

When L3ETC = 0 and L3EZT = 0, color 0 is displayed in black (transparent).

- Bit 23 to 0 L3ETC (L3 layer Extend Transparent Color) Sets transparent color code for the L3 layer. In indirect color mode (8 bits/pixel) bits 7 to 0 are used.
- Bit 31 L3EZT (L3 layer Extend Zero Transparency)

Sets handling of color code 0 in L3 layer

- 0 Code 0 as transparency color
- 1 Code 0 as non-transparency color

L4ETC (L4 layer Extend Transparency Control)

Register address	Displ	DisplayBaseAddress + 1B0 _H					
Bit number	31	31 :30:29:28::24:23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0					
Bit field name	L4EZT	Reserved	L4ETC				
R/W	RW	R0	RW				
Initial value	0	0					

This register sets the transparent color for the L4 layer. This register sets the transparent color for the L4 layer. When L4ETC = 0 and L4EZT = 0, color 0 is displayed in black (transparent).

Bit 23 to 0 L4ETC (L4 layer Extend Transparent Color)

Sets transparent color code for the L4 layer. In indirect color mode (8 bits/pixel) bits 7 to 0 are used.

Bit 31 L4EZT (L4 layer Extend Zero Transparency)

Sets handling of color code 0 in L4 layer

- 0 Code 0 as transparency color
- 1 Code 0 as non-transparency color

Register address	Displ	DisplayBaseAddress + 1B4 _H						
Bit number	31	30 29 28 24	23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0					
Bit field name	L5EZT	Reserved	L5ETC					
R/W	RW	R0	RW					
Initial value	0	0						

L5ETC (L5 layer Extend Transparency Control)

This register sets the transparent color for the L5 layer. This register sets the transparent color for the L5 layer. When L5ETC = 0 and L5EZT = 0, color 0 is displayed in black (transparent).

Bit 23 to 0 L5ETC (L5 layer Extend Transparent Color)

Sets transparent color code for the L5 layer. In indirect color mode (8 bits/pixel) bits 7 to 0 are used.

- Bit 31 L5EZT (L5 layer Extend Zero Transparency) Sets handling of color code 0 in L5 layer
 - 0 Code 0 as transparency color
 - 1 Code 0 as non-transparency color

L1YCR0 (L1 layer YC to Red coefficient 0)

Register address	DisplayBase	DisplayBaseAddress + 0x1E0					
Bit No.	$31\ 30\ 29\ 28\ 27$	$26\ 25\ 24\ 23\ 22\ 21\ 20\ 19\ 18\ 17\ 16$	$10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0$				
Bit field name	Reserved	a12	Reserved	a11			
R/W	R0	RW	R0	RW			
Initial value	0	000 0000 0000	0	001 0010 1011			

This register defines the parameter for the red component at YCbCr/RGB conversion.

Bit 10-0

a11

11-bit signed fixed-point value. The lower 8 bits of the value are placed after the decimal point. The value is complement representation for 2.

Bit 26-16 a12

11-bit signed fixed-point value. The lower 8 bits of the value are placed after the decimal point. The value is complement representation for 2.

L1YCR1 (L1 layer YC to Red coefficient 1)

Register address	DisplayBaseAddres	DisplayBaseAddress + 0x1E4					
Bit No.	$31\ 30\ 29\ 28\ 27\ 26\ 25\ 24\ 23\ 22\ 21\ 20\ 19\ 18\ 17\ 16\ 15\ 14\ 13\ 12\ 11\ 10\ 9\ 8\ 7\ 6\ 5\ 4\ 3$						
Bit field name	Reserved	b1	Reserved	a13			
R/W	R0	RW	R0	RW			
Initial value	0	1 1111 0000	0	001 1001 1000			

This register defines the parameter for the red component at YCbCr/RGB conversion time.

Bit 10-0

a13

b1

11-bit signed fixed-point value. The lower 8 bits of the value are placed after the decimal point. The value is complement representation for 2.

Bit 24-16

9-bit signed integer. The value is complement representation for 2.

225

L1YCG0 (L1 layer YC to Green coefficient 0)

Register address	DisplayBaseA	DisplayBaseAddress + 0x1E8					
Bit No.	$31\ 30\ 29\ 28\ 27$	26 25 24 23 22 21 20 19 18 17 16	10 9 8 7 6 5 4 3 2 1 0				
Bit field name	Reserved	a22	Reserved	a21			
R/W	R0	RW	R0	RW			
Initial value	0	111 1001 1100	0	001 0010 1011			

This register defines the parameter for the green component at YCbCr/RGB conversion time.

Bit 10-0

11-bit signed fixed-point value. The lower 8 bits of the value are placed after the decimal point. The value is complement representation for 2.

Bit 26-16 a22

a21

11-bit signed fixed-point value. The lower 8 bits of the value are placed after the decimal point. The value is complement representation for 2.

L1YCG1 (L1 layer YC to Green coefficient 1)

Register address	DisplayBaseAddres	DisplayBaseAddress + 0x1EC						
Bit No.	$31\ 30\ 29\ 28\ 27\ 26\ 25$	$24\ 23\ 22\ 21\ 20\ 19\ 18\ 17\ 16$	$15\ 14\ 13\ 12\ 11$	10 9 8 7 6 5 4 3 2 1 0				
Bit field name	Reserved	b2	Reserved	a23				
R/W	R0	RW	R0	RW				
Initial value	0	1 1111 0000	0	111 0010 1111				

This register defines the parameter for the green component at YCbCr/RGB conversion time.

Bit 10-0a23
11-bit signed fixed-point value. The lower 8 bits of the value are placed after the decimal point.
The value is complement representation for 2.Bit 24-16b2
9-bit signed integer. The value is complement representation for 2.

226

L1YCB0 (L1 layer YC to Blue coefficient 0)

Register address	DisplayBaseA	DisplayBaseAddress + 0x1F0					
Bit No.	$31\ 30\ 29\ 28\ 27$	26 25 24 23 22 21 20 19 18 17 16	$15\ 14\ 13\ 12\ 11$	10 9 8 7 6 5 4 3 2 1 0			
Bit field name	Reserved	a32	Reserved	a31			
R/W	R0	RW	R0	RW			
Initial value	0	010 0000 0100	0	001 0010 1011			

This register defines the parameter for the blue component at YCbCr/RGB conversion.

Bit 10-0

11-bit signed fixed-point value. The lower 8 bits of the value are placed after the decimal point. The value is complement representation for 2.

Bit 26-16 a32

a31

11-bit signed fixed-point value. The lower 8 bits of the value are placed after the decimal point. The value is complement representation for 2.

L1YCB1 (L1 layer YC to Green coefficient 1)

Register address	DisplayBaseAddres	DisplayBaseAddress + 0x1F4						
Bit No.	$31\ 30\ 29\ 28\ 27\ 26\ 25$	$24\ 23\ 22\ 21\ 20\ 19\ 18\ 17\ 16$	$15\ 14\ 13\ 12\ 11$	10 9 8 7 6 5 4 3 2 1 0				
Bit field name	Reserved	b3	Reserved	a33				
R/W	R0	RW	R0	RW				
Initial value	0	1 1111 0000	0	000 0000 0000				

This register defines the parameter for the blue component at YCbCr/RGB conversion.

Bit 10-0a33
11-bit signed fixed-point value. The lower 8 bits of the value are placed after the decimal point.
The value is complement representation for 2.Bit 24-16b3
The value is a 9-bit signed integer. The value is complement representation for 2.

-0	UPALU-255 (LU layer Palette U-255)								
	Register address	Di	DisplayBaseAddress + 400 _H DisplayBaseAddress + 7FC _H						
	Bit number	31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
	Bit field name	А		R	-	G	-	В	
	R/W	RW	R0	RW	R0	RW	R0	RW	R0
	Initial value	Don't care	0000000	Don't care	00	Don't care	00	Don't care	00

L0PAL0-255 (L0 layer Palette 0-255)

These are color palette registers for L0 layer and cursors. In the indirect color mode, a color code in the display frame indicates the palette register number, and the color information set in that register is applied as the display color of that pixel. This register corresponds to the CPALn register for previous products.

Bit 7 to 2	B (Blue)
	Sets blue color component
Bit 15 to 10	G (Green)
	Sets green color component
Bit 23 to 18	R (Red)
	Sets red color component
Bit 31	A (Alpha)
	Specifies whether or not to perform blending with lower layers when the blending mode is enabled.

- 0 Blending not performed even when blending mode enabled Overlay is performed via transparent color.
- 1 Blending performed

- 1	FALU-255 (L	I Id	iyer Palelle 0-255)								
	Register address DisplayBaseAddress + 800 _H DisplayBaseAddress + BFC _H											
	Bit number	31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
	Bit field name	А		R	G	-	В					
	R/W	RW	R0	RW	R0	RW	R0	RW	R0			
	Initial value	Don't care	0000000	Don't care	00	Don't care	00	Don't care	00			

L1PAL0-255 (L1 layer Palette 0-255)

These are color palette registers for L1 layer and cursors. In the indirect color mode, a color code in the display frame indicates the palette register number, and the color information set in that register is applied as the display color of that pixel. This register corresponds to the MBPALn register for previous products.

Bit 7 to 2B (Blue)
Sets blue color componentBit 15 to 10G (Green)
Sets green color componentBit 23 to 18R (Red)
Sets red color componentBit 31A (Alpha)

Specifies whether or not to perform blending with lower layers when the blending mode is enabled.

- 0 Blending not performed even when blending mode enabled Overlay is performed via transparent color.
- 1 Blending performed

-2	PALU-200 (L	Z la	iyer Palette 0-255)							
	Register address	Di	splayBaseAddress +	1000 _H Displayl	BaseA	ddress + 13FC _H					
	Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1									
	Bit field name	А		R		G	-	В			
	R/W	RW	R0	RW	R0	RW	R0	RW	R0		
	Initial value	Don't care	0000000	Don't care	00	Don't care	00	Don't care	00		

L2PAL0-255 (L2 layer Palette 0-255)

These are color palette registers for L2 layer and cursors. In the indirect color mode, a color code in the display frame indicates the palette register number, and the color information set in that register is applied as the display color of that pixel.

Bit 7 to 2	B (Blue)
	Sets blue color component
Bit 15 to 10	G (Green)
	Sets green color component
Bit 23 to 18	R (Red)
	Sets red color component
Bit 31	A (Alpha)
	Specifies whether or not to perform b

Specifies whether or not to perform blending with lower layers when the blending mode is enabled.

- 0 Blending not performed even when blending mode enabled Overlay is performed via transparent color.
- 1 Blending performed

_J	PALU-200 (L.	o la	lyer Palette 0-255)						
	Register address	Dis	splayBaseAddress +	1400 _H Displayl	BaseA	ddress + 17FC _H				
	Bit number	number 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2								
	Bit field name	А		R		G		В		
	R/W	RW	R0	RW	R0	RW	R0	RW	R0	
	Initial value	Don't care	0000000	Don't care	00	Don't care	00	Don't care	00	

L3PAL0-255 (L3 layer Palette 0-255)

These are color palette registers for L3 layer and cursors. In the indirect color mode, a color code in the display frame indicates the palette register number, and the color information set in that register is applied as the display color of that pixel.

Bit 7 to 2B (Blue)
Sets blue color componentBit 15 to 10G (Green)
Sets green color componentBit 23 to 18R (Red)
Sets red color componentBit 31A (Alpha)
Case if secure to the second to second to

Specifies whether or not to perform blending with lower layers when the blending mode is enabled.

- 0 Blending not performed even when blending mode enabled Overlay is performed via transparent color.
- 1 Blending performed

FUJITSU SEMICONDUCTOR CONFIDENTIAL 12.4 Video capture registers

VCM (Video Capture Mode)

Register address	Ca	pture	eBas	eAd	dress +	00h						
Bit number	31	30	29	28	27 26	25 24	23 22 21	20	19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	2	1	0
Bit field name	VIE	VIS	Re ser ve	VIC E	Reserv e	′ см	Reserve	VI	Reserve	<u>פ</u> ו	vs	Rs v
R/W	R/ W	R/ W	RX	R/ W	RX	R/W	RX	R/ W	RX F		R/ W	RX
Initial value	0	0	Х	0	Х	00	Х	0	X)	0	Х

This register sets the video capture mode. This register is not initialized by software reset.

Bit1	VS (Video S NTSC or P/ 0	AL is selected for the code error detection (only RBT656 is input) NTSC
	1	PAL
Bit2		ive RGB input on) mode is set up. RGB video data is accepted via an internal RGB preprocessor which converts RGB to YUV422 Native RGB
Bit20		Interpolation) er to perform vertical interpolation Performs vertical interpolation. The graphics are enlarged vertically by two times Does not perform vertical interpolation
Bit25-24	CM (Captur Sets video 00 01 10 11	re Mode) capture mode. To capture vides, set these bits to "11". Initial value Reserved Reserved Capture
Bit28	VICE (Vide Capture clo 0 1	o Input Clock Enable) ck enable Enable Disable
Bit30	VIS (Video 0 1	Input Select) RBT656/601 RGB
Bit31	•	Input Enable) leo capture function Does not capture video Captures video

- Procedure of video capture clock Stop

1) 0 is written in bit31 (VIE) of the VCM register, and the video capture function is invalidated.

2) 1 is written in bit28 (VICE) of the VCM register, and Stop does video capture clock.

- Procedure of video capture clock beginning

1) 0 is written in bit28 (VICE) of the VCM register, and video capture clock is made effective.

2) 1 is written in bit31 (VIE) of the VCM register, and the video capture function is made effective.

CSC (Capture SCale)

Register address	CaptureBaseAddres	tureBaseAddress + 04h									
Bit number	31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0							
Bit field name	VSCI	VSCF	HSCI	HSCF							
R/W	R/W	R/W	R/W	R/W							
Initial value	00001	0000000000	00001	0000000000							

This register sets the video capture upscaling/downscaling ratio.

Bit10-0	HSCF (Vertical SCale Fraction) The decimal part of a horizontal upscaling/downscaling ratio is set.
Bit15-11	HSCI (Horizontal Scale Integer) The integer part of a horizontal upscaling/downscaling ratio is set.
Bit26-16	VSCF (Vertical SCale Fraction) The decimal part of a vertical upscaling/downscaling ratio is set.
Bit31-27	VSCI (Vertical SCale Integer) The integer part of a vertical upscaling/downscaling ratio is set.

Note:

It is not possible to smoothly transition from downscaling mode to upscaling mode. Picture artefacts will occur at transition time. The reason for this hardware limitation is that the downscaling and upscaling modules share the same interpolation unit.

233

CBM (video Capture Buffer Mode)

Register address	Capti	ptureBaseAddress + 10h																	
Bit number 31 30 29 28 27 24 23 22 17 16 15 14 13 12							11	10 9 8	7	6	5	4	3	2 1	0				
Bit field name	00	S- BUF	C- RGB	PAU	Reserve	CBW	res v	C2 4	BED	CSW	resv	SSS		SSM		HRV	re	eserve	C- BST
R/W	R/W	R/W	R/W	R/W	RX	R/W	RX	R/ W	R/W	R/W	RX	R/W		R/W		R/W		RX	R/W
Initial value	0	Х	Х	0	Х	Х	Х	0	0	0	Х	000		000		0		Х	0

Bit0	CBST (Capture Burst) The burst-length at the capture Write is specified. Because long burst-length is good the access efficiency, 1 is recommended to be set. 0 Normal burst write (4word) 1 Long burst write (8word)
Bit4	HRV (H-reverse) The horizontal reversing mode specification 0 Normal operation mode 1 Horizontal reversing mode
Bit7-5	SSM (Single Shot Mode)Single shot mode000Normal operation mode001Single shot/odd field mode010Single shot/even field mode011Single shot/both field mode (with field distinction)111Single shot/both field mode2 (without field distinction)
Bit10-8	SSS (Single Shot Status)The state of single shot operation is shown.000Initial state001Odd field mode / under capture010Even field mode / under capture100Both field mode / under first field capture101Both field mode / under second field capture
Bit12	CSW (Color Swap) The byte position of a color ingredient is replaced. 0 Without exchange 1 With exchange
Bit13	BED (Big EnDian) Endian is reversed 0 Little endian (enable display) 1 Big endian (disable display)
Bit14	C24 (Color 24bit/pixel) It specifies wherther 24bit/pixel or 16bit/pixel is used in RGB capture. It is effective in native RGB capture (NRGB=1) or converted RGB capture(CRGB=1). 0 16bit/pixel 1 24bit/pixel
Bit23-16	CBW (Capture Buffer memory Width) Sets memory width (stride) of capture buffer in 64 bytes
Bit28	PAU (PAUse) It is shown that capture operation is Stop temporarily. 0 can be written and it can cancel. 0 Under operation 1 Stop temporarily
Bit29	 CRGB (Capture RGB write) It specifies whether YCbCr to RGB conversion is applied or not before writing into the capture buffer. There are two formats of RGB or RGB=5:5:5 (16 bits/pixel) and RGB = 8:8:8 (24 bit/pixel) format, depending to C24-bit value described above. 0 YCbCr (without conversion) 1 RGB
Bit30	 SBUF (Single Buffer) It specifies managing a capture buffer by the single buffer system. 0 Normal mode (ring buffer) 1 Single buffer mode
Bit31	OO (Odd Only mode) Specifies whether to capture odd fields only
'LIME' GD	C Specifications 234

Normal mode 0 1

Odd only mode

Note: This register is not initialized by software reset.

CBOA (video Capture Buffer Origin Address)

Regist	ter address	CaptureBaseAddress + 14h	ptureBaseAddress + 14h										
	Bit number	31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 23	- 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4	3 - 2 - 1 - 0									
В	lit field name	Reserved	CBOA										
	R/W	RX	R/W	R0									
	Initial value	Don't care	Don't care	0									

This register specifies the starting (origin) address of the video capture buffer.

CBLA (video Capture Buffer Limit Address)

Register address CaptureBaseAddress + 18h	
Bit number 31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 1	10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0
Bit field name Reserved CBLA	
R/W RX R/W	R0
Initial value Don't care Don't care	0

This register specifies the end (limit) address of the video capture buffer.

CBLA must be larger than CBOA.

CIHSTR (Capture Image Horizontal STaRt)

Register address	Capturel	BaseAdd	lress + 10	Ch												
Bit number	15					10	9	8	7	6	5	4	3	2	1	0
Bit field name		Reserved				Reserved CIHSTR										
R/W		RX			R/W											
Initial value		Don't care				Don't care										

This register sets the range of the images to be written (captured) to the video capture buffer. Specify the X coordinates located in the top left of the image range as the count of pixels from the top left of the image. For downscaling, apply this setting to the post-reduction image coordinates.

CIVSTR (Capture Image Vertical STaRt)

Register address	Capture	BaseAdd	lress + 1	Eh								ptureBaseAddress + 1Eh						
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Bit field name		Reserved			Reserved CIVSTR													
R/W		RX								R/	W							
Initial value		Don't care								Don't	care							

This register sets the range of the images to be written (captured) to the video capture buffer. Specify the Y coordinates located in the top left of the image range as the count of pixels from the top left of the image. For downscaling, apply this setting to the post-reduction image coordinates.

CIHEND (Capture Image Horizontal END)

Register address	Capture	aptureBaseAddress + 20h														
Bit number	15				11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Reserved				Reserved CIHEND										
R/W		RX				R/W										
Initial value		Х								>	(

This register sets the range of the images to be written (captured) to the video capture buffer. Specify the X coordinates located in the bottom right of the image range as the count of pixels from the top left of the image. For downscaling, apply this setting to the post-reduction image coordinates.

If the pixel at the right end of the image is not aligned on 64 bits/word boundary, extra data is written before 64 bits/word boundary.

If the width of the input image is less than the range set by this command, data is written only at the size of input image.

CIVEND (Capture Image Vertical END)

Register address	Capture	aptureBaseAddress + 22h														
Bit number	15				11	10	9	8	7	6	5	4	3	2	1	0
Bit field name		Reserved				Reserved CIVEND										
R/W		RX								R/	W					
Initial value		Х			Х											

This register sets the range of the images to be written (captured) to the video capture buffer. Specify the Y coordinates located in the bottom right of the image range as the count of pixels from the top left of the original image to be input. For downscaling, apply this setting to the post-reduction image coordinates.

If the count of rasters of the input image is less than the range set by this command, data is written only at the size of the input image.

CVCNT (Capture Vertical Count)

Register address	Capture	BaseAd	dress + 3	300h													
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		0
Bit field name	Reserved			erved CVCNT													
R/W		R0				R											
Initial value	0								Don'i	t care							

Y coordinates of the raster which is carrying out the capture are shown. The register is read-only.

CHP (Capture Horizontal Pixel)

Register address	CaptureBaseAddress + 28h	
Bit number	31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10	9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0
Bit field name	Reserved	CHP
R/W	RX	R/W
Initial value	Х	0x168 (360)

This register sets the count of horizontal pixels of the image output after scaling. Specify the count of horizontal pixels in 2 pixels. Maximum is 840 pixels (setting value is 0x1A4)

CVP (Capture Vertical Pixel)

Register address	CaptureBaseAdd	ress + 2c _H									
Bit number	31 - 30 - 29 - 28 - 27 - 26	30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0									
Bit field name	Reserved	CVPP	Reserved	CVPN							
R/W	RX	RW	RX	RW							
Initial value	Х	271 _н (625 _D)	Х	20D _H (525 _D)							

This register sets the count of vertical pixels of the image output after scaling. The fields to be used depend on the video format to be used.

Bit 25 to 16 CVPP (Capture Vertical Pixel for PAL)

Set count of vertical pixels of output image in PAL format used

Bit 9 to 0 CVPN (Capture Vertical Pixel for NTSC)

Set count of vertical pixels of output image in NTSC format used

237

CLPF (Capture Low Pass Filter)

Register address	CaptureBaseAd	dress + 40h			
Bit number	31-30-29-28	27 - 26 - 25 - 24	23 - 22 - 21 - 20	19 - 18 - 17 - 16	15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0
Bit field name	Reserved	CVLPF	Reserved	CHLPF	Reserved
R/W	RX	R/W	RX	R/W	RX
Initial value	0	0	0	0	Х

This register sets the Low Pass Filter Coefficient. The vertical low pass filter consists of FIR filters of three taps. The horizontal low pass filter consists of FIR filters of five taps. It specifies independently in 2-bit coefficient code with a luminance signal (Y) and a chrominance signal (Cb and Cr). A low pass filter is OFF (through) in a setup of each coefficient code "00".

Bit 17 to 16	CHLPF_C (0	Capture Horiz	ontal LPF coe	fficient C)		
	CHLPF_C	K0	K1	K2	K3	K4
	00	0	0	1	0	0
	01	0	1/4	2/4	1/4	0
	10	0	3/16	10/16	3/16	0
	11	3/32	8/32	10/32	10/32	3/32
Bit 19 to 18	CHLPF_Y (0	Capture Horiz	ontal LPF coe	fficient Y)		
	CHLPF_Y	K0	K1	K2	K3	K4
	00	0	0	1	0	0
	01	0	1/4	2/4	1/4	0
	10	0	3/16	10/16	3/16	0
	11	3/32	8/32	10/32	10/32	3/32
Bit 25 to 24	CVLPF_C (0	Capture Vertio	cal LPF coeffic	ient C)		
	CVLPF_C	K0	K1	K2		
	00	0	1	0		
	01	1/4	2/4	1/4		
	10	3/16	10/16	3/16		
	11	Reserved	t			
Bit 27 to 26	CVLPF_Y (0	Capture Vertic	al LPF coeffic	ient Y)		
	CVLPF_Y	K0	K1	K2		
	00	0	1	0		
	01	1/4	2/4	1/4		
	10	3/16	10/16	3/16		
	11	Reserved	t			

Note:

- In the case of Native RGB mode (NRGB=1), only a setup of CVLPF_Y code becomes effective.

CMSS (Capture Magnify Source Size)

Register address	CaptureBaseAd	dress + 48h									
Bit number	31 - 30 - 29 - 28	1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Bit field name	Reserved	CMSHP	Reserved	CMSVL							
R/W	RX	R/W	RX	R/W							
Initial value	Х	Х	Х	Х							

Bit11-0 CMSVL (Capture Magnify Source Vertical Line) This register sets the number of vertical lines of the image input before Magnify scaling.

CMDS (Capture Magnify Display Size)

Register address	CaptureBaseAdd	dress + 4Ch		
Bit number	31-30-29-28	27 - 26 - 25 - 24 : 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16	15 - 14 - 13 - 12	11-10-9-8-7-6-5-4-3-2-1-0
Bit field name	Reserved	CMDHP	Reserved	CMDVL
R/W	RX	R/W	RX	R/W
Initial value	Х	Х	Х	Х

Bit11-0 CMDVL (Capture Magnify Display Vertical Line) This register sets the number of vertical lines of the image output after Magnify scaling.

Bit27-16 CMSHP (Capture Magnify Source Horizontal Pixel) This register sets the number of horizontal pixels of the image input before Magnify scaling. Specify the number of horizontal pixels in 2-pixel units.

Bit27-16 CMDHP (Capture Magnify Display Horizontal Pixel) This register sets the number of horizontal pixels of the image output after Magnify scaling. Specify the number of horizontal pixels in 2-pixel units.

RGBHC (RGB input Hsync Cycle)

Register address	CaptureBaseAddress + 80h								
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
Bit field name	Reserved	RGBHC							
R/W	RX	R/W							
Initial value	Х	Х							

Bit13-0 RGBHC

This register sets number of HSYNC cycles of the RGB input. . It is used when it is made a setup which samples VSYNC. The setting value +1 is a level cycle.

RGBHEN (RGB input Horizontal Enable area)

Register address	CaptureBaseAddress + 84h								
Bit number	31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0								
Bit field name	Reserved	RGBHST	Reserved	ved RGBHEN					
R/W	RX	R/W	RX	R/W					
Initial value	Х	Х	Х	Х					

It is a parameter for determining effective pixel data.

- Bit12-0 RGBHEN(RGB input Horizontal Enable area Size) Effective pixel data size is set up per pixel. Specify the number of horizontal pixels in 2-pixel units
- Bit25-16 RGBHST(RGB input Horizontal Enable area Start position) The start position of effective pixel data is set up. The setting value -4 is a start position.

Note:

- The maximum horizontal enable area size (RGBHEN) which can be captured is 840

pixels. This restriction is due to the line buffer size in the video capture module.

RGBVEN (RGB input Vertical Enable area)

Register address	CaptureBaseAddress + 88h									
Bit number	31-30-29-2	31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0								
Bit field name	Reserv ed	Reserved	RGBVST	Reserved	RGBVEN					
R/W	RX	R/W	R/W	RX	R/W					
Initial value	Х	Х	Х	Х	Х					

This parameter determines the effective pixel data.

- Bit12-0 RGBVEN(RGB input Vertical Enable area Size) Set effective line size
- Bit25-16 RGBVST(RGB input Vertical Enable area Start position) The start position of effective line is set up. The setting value -1 is a start position.

RGBS (RGB input Sync)

Register address	CaptureBaseAddress + 90h							
Bit number	31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0							
Bit field name	Reserved	RM	Reserved	HP	VP			
R/W	RX	R/	RX	R/	R/			
		VV		VV	VV			
Initial value	Х	1	Х	0	0			

Edge detection of a synchronized signal is set up. It is used at the time of RGB input format.

Bit0	 VP (VSYNCI Polarity) 0 Negative edge of VINVSYNC is set to VSYNC. 1 Positive edge of VINVSYNC is set to VSYNC.
Bit1	 HP (HSYNCI Polarity) Negative edge of VINHSYNC is set to HSYNC. Positive edge of VINHSYNC is set to HSYNC.
Bit16	RM (RGB Input Mode select) Sets Direct RGB input mode 0 reserved 1 RGB666 Direct input Mode

Conversion Operation

RGB data is converted to YUV by the following matrix expression :

Y =	a11*R + a12*G + a13*B + b1
Cb=	a21*R + a22*G + a23*B + b2
Cr=	a31*R + a32*G + a33*B + b3

aij 10bit signed real (lower 8bit is fraction)bi 8bit unsigned integer

Each coefficients can be defined by following registers.

Cb and Cr components are reduced half after this operation to form the 4:2:2 format.

Register address	CaptureBaseAddress + C0 _H						
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
Bit field name	a11	Re	a12	Re	a13		
R/W	RW	R	RW	R	RW		
Initial value	0001000010 b	0	001000000 b	0	0000011001 b		

RGBCMY (RGB Color convert Matrix Y coefficient)

This register sets the RGB color convert matrix coefficient.

Bit 31 to 22	a11 10bit signed real (the lower 8bit are the fraction part)
Bit 20 to 11	a12 10bit signed real (the lower 8bit are the fraction part)
Bit 9 to 0	a13 10bit signed real (the lower 8bit are the fraction part)

RGBCMCb (RGB Color convert Matrix Cb coefficient)

Register address	CaptureBaseAddress + C4 _H						
Bit number	31 30 29 28 27 26 25 24 23 22	21	20 19 18 17 16 15 14 13 12 11	10	9 8 7 6 5 4 3 2 1 0		
Bit field name	a21	Re	a22	Re	a23		
R/W	RW	R	RW	R	RW		
Initial value	1111011010 _b	0	1110110110 _b	0	0001110000 b		

This register sets the RGB color convert matrix coefficient.

Bit 31 to 22	A21
	10bit signed real (the lower 8bit are the fraction part)
Bit 20 to 11	A22
	10bit signed real (the lower 8bit are the fraction part)
Bit 9 to 0	A23
	10bit signed real (the lower 8bit are the fraction part)

RGBCMCr (RGB Color convert Matrix Cr coefficient)

Register address	CaptureBaseAddress + C8 _H	
MB86276 'LIM Rev1.1a	E' GDC Specifications	242

Bit number	31 30 29 28 27 26 25 24 23 22	21	20 19 18 17 16 15 14 13 12 11	10	9 8 7 6 5 4 3 2 1 0
Bit field name	A31	Re	A32	Re	A33
R/W	RW	R	RW	R	RW
Initial value	0001110000 _b	0	1110100010 _b	0	1111101110 _b

This register sets the RGB color convert matrix coefficient.

Bit 31 to 22	A31 10bit signed real (the lower 8bit are the fraction part)
Bit 20 to 11	A32 10bit signed real (the lower 8bit are the fraction part)
Bit 9 to 0	A33

10bit signed real (the lower 8bit are the fraction part)

RGBCMb (RGB Color convert Matrix b coefficient)

Register address	С	CaptureBaseAddress + CC _H								
Bit number	31	30 29 28 27 26:25 24 23 22	21 20	19:18:17:16 15 14 13 12 11	10:9	8 7 6 5 4 3 2 1 0				
Bit field name	R	B1	Res	b2	Res	b3				
R/W	R	RW	R	RW	R	RW				
Initial value	0	000010000 b	0	010000000 b	0	01000000 b				

This register sets the RGB color convert matrix coefficient.

Bit 30 to 22 B1

9bit unsigned integer

- Bit 19 to 11 B2 9bit unsigned integer
- Bit 8 to 0 B3

9bit unsigned integer

CINT (Capture Interrupt)

Bit 1

Register address	CaputureBaseAddress + 178 _H		
Bit No.	31 30 29 28 27 26 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1	0
Bit field name	Reserved	VS	
R/W	R	RW0	
Initial value	0	0	

This register is the video synchronization signal interrupt status register. This register is cleared by writing "0" to it.

VS (VSYNC) 1: VSYNC

0: No VSYNC

CINTMASK (Capture Interrupt Mask)

Register address	CaputureBaseAddress + 17C _H
Bit No.	31 30 29 28 27 26 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit field name	Reserved	VS	
R/W	R	RW	
Initial value	0	0	

This register masks the video synchronization signal interrupt

Bit 1

VS (VSYNC) 1: Does not mask interrupt.

0: Masks interrupt.

[656 Code error detect]

< RBT656 format input only>

CDCN (Capture Data Count for NTSC)

Register address	CaptureBas	CaptureBaseAddress + 4000h										
Bit number	31-30-29	28 - 27 - 26 - 25 - 24 : 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16	- 15 - 14 - 13	-12-11-10-9-8-7-6-5-4-3-2-1-0								
Bit field name	Reserved	BDCN	Reserved	VDCN								
R/W	RX	RW	RX	RW								
Initial value	Х	0x10f(271)	X	0x5A3(1443)								

This register sets the count of data of the input video stream in NTSC format.

Bit12-0 VDCN (Valid Data Count for NTSC)

Sets count of data processed during valid period in NTSC format. The setting value +1 is a data numberBit28-16BDCN (Blanking Data Count for NTSC)

Sets count of data processed during blanking period in NTSC format. The setting value +1 is a data number

	4 T►		4 T→		4T ►
VI[7:0]	EAV	Blanking data 80,10,80,10,80,.	SAV	Multiplexed video data Cb,Y,Cr,Y,Cb,Y,Cr,Y,	EAV
		H-BLANK 276T [525] 288T [625]	>	ACTIVE-VIDEO 1440T [525] 1440T [625]	
		272T(BDCN:271 284T(BDCP:283	'	1444T(VDCN:1443T) 1444T(VDCP:1443T)	>

The range of VDCN and BDCN is shown in the following figure.

SAV: start of active video timing reference code EAV: end of active video timing reference code T: clock period 37 ns nom.

CDCP (Capture Data Count for PAL)

Register address	CaptureBas	CaptureBaseAddress + 4004h									
Bit number	31-30-29	- 28 - 27 - 26 - 25 - 24 : 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 -	15 - 14 - 13	-12-11-10-9-8-7-6-5-4-3-2-1-0							
Bit field name	Reserved	BDCP	Reserved	VDCP							
R/W	RX	RW	RX	RW							
Initial value	Х	0x11B(283)	Х	0x5A3(1443)							

This register sets the count of data of the input video stream in PAL format.

- Bit12-0 VDCP (Valid Data Count for PAL) Sets count of data processed during valid period in PAL format. The setting value +1 is a data number
- Bit28-16 BDCP (Blanking Data Count for PAL) Sets count of data processed during blanking period in PAL format. The setting value +1 is a data number

VCS (Video Capture Status)

Register address	CaptureBaseAddress + 08h	
Bit number	31 - 30 - 29 - 28 - 27 - 26 - 25 - 24 - 23 - 22 - 21 - 20 - 19 - 18 - 17 - 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5	4 - 3 - 2 - 1 - 0
Bit field name	Reserve	CE
R/W	RX	RW0
Initial value	Х	00000

This register indicates the ITU-RBT656 SAV and EAV status.

To detect error codes, set NTSC/PAL in the VS bit of VCM. If NTSC is set, reference the number of data in the capture data count register (CDCN). If PAL is set, reference the number of data in the capture data counter register (CDCP). If the reference data does not match the stream data , or undefined Fourth word of SAV/EAV codes are detected, bits 4 to 0 of the video capture status register (VCS) will be values as follows.

Bits 6-0 CE0 (Capture Error 0)

Bit0	1: RBT.656 undefined error (Code Bit7)	0 : true
Bit1	1 : RBT.656 undefined error (Code Bit7-4)	0 : true
Bit2	1: RBT.656 undefined error (Code Bit7-0)	0 : true
Bit3	1 : RBT.656 long term H code error (SAV)	0 : true
Bit4	1 : RBT.656 long term H code error (EAV)	0 : true
	- , ,	

FUJITSU SEMICONDUCTOR CONFIDENTIAL 12.5 Drawing registers

12.5.1 Drawing control registers

CTR (Control Register)

Register address	D	ra	wE	3a	se	Ad	dre	es	s +	40)0ı	Н																							
Bit number	31	3	02	9	28	27	26	32	5 24	4 2	23	22	21	20	19	18	3 1	7	16	15	14	13	12	2 1	1 10	9	8	7	6	5	4	3	2	1	0
Bit field name									F	C		CE				FC	CN	Т			NF	FF	FE	-		S	S			[DS			Ρ	S
R/W									R\	v		RW					R				R	R	R				R				R			F	R
Initial value									C)		0				01	11()1			0	0	1			(00			(00			0	0

This register indicates drawing flags and status information. Bits 24 to 22 are not cleared until 0 is set.

Bit 1 and 0	PS (Pixel engine Status)
	Indic	ate status of pixel engine unit
	00	Idle
	01	Busy
	10	Reserved
	11	Reserved
Bit 5 and 4	DS (DDA Status)
	Indic	ate status of DDA
	00	Idle
	01	Busy
	10	Busy
	11	Reserved
Bit 9 and 8	SS (Setup Status)
	Indic	ate status of Setup unit
	00	Idle
	01	Busy
	10	Reserved
	11	Reserved
Bit 12		FIFO Empty)
DIL 12		ates whether data contained or not in display list FIFO
	0	Valid data
	1	No valid data
	I	
Bit 13	FF (I	FIFO Full)
	Indic	ates whether display list FIFO is full or not
	0	Not full
	1	Full
Bit 14	NF (FIFO Near Full)
	Indic	ates how empty the display list FIFO is
	0	Empty entries equal to or more than half
MB86276 'LIME' Rev1.1a	GDC	C Specifications 248

1 Empty entries less than half

Bit 20 to 15	FCNT (FIFO Counter) Indicates count of empty entries of display list FIFO (0 to 100000 _b) 32 entries deep
Bit 22-23	CE (Display List Command Error)
	Indicates command error occurrence (Not all error can detect. Need software reset or hardware reset for recovery)
	00 Normal
	11 Command error detected
Bit 24	FO (FIFO Overflow)
	Indicates FIFO overflow occurrence

- 0 Normal
- 1 FIFO overflow detected

IFSR (Input FIFO Status Register)

Register address	DrawBaseAddress + 404 _H			
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3	2	1	0
Bit field name		NF	FF	FE
R/W		R	R	R
Initial value		0	0	1

This is a mirror register for bits 14 to 12 of the CTR register.

IFCNT (Input FIFO Counter)

Register address	DrawBaseAddress + 408 _H	
Bit number	31:30-29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10:9-8-7-6	5 4 3 2 1 0
Bit field name		FCNT
R/W		R
Initial value		011101

This is a mirror register for bits 20 to 15 of the CTR register.

SST (Setup engine Status)

Register address	DrawBaseAddress + 40C _H	
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2	1 0
Bit field name		SS
R/W		R
Initial value		00

This is a mirror register for bits 9 to 8 of the CTR register.

DST (DDA Status)

Register address	DrawBaseAddress + 410 _H	
Bit number	31-30-29-28-27-26-25-24-23-22-21-20-19-18-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2	1 0
Bit field name		DS
R/W		RW
Initial value		00

This is a mirror register for bits 5 to 4 of the CTR register.

PST (Pixel engine Status)

Register address	DrawBaseAddress + 414 _H	
Bit number	31-30-29-28-27-26-25-24-23-22-21-20-19-18-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2	1 0
Bit field name		PS
R/W		R
Initial value		00

This is a mirror register for bits 1 to 0 of the CTR register.

EST (Error Status)

Register address	DrawBaseAddress + 418 _H			
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3	2	1	0
Bit field name		FO	С	E
R/W		RW	R	w
Initial value		0	()

This is a mirror register for bits 24 to 22 of the CTR register.

12.5.2 Drawing mode registers

When write to the registers, use the *SetRegister* command. The registers cannot be accessed from the CPU.

MDR0	(Mode	Register	for	miscellaneous)
------	-------	----------	-----	----------------

Register	DrawBa	aseAddress + 420)u										
address								1.1	- 1 - 1 - 1 -				
	31 30:29	28-27-26-25-24-23		19:18:17		14 13 12 11		_	7 6 5 4	-	1 0		
Bit field name R/W		W0	ZP RW	W0	CF	W0		YCX	W0	BSV RW	BSF RW		
Initial value		VV0	0	000	RW 00	000	0	v RW	VV0	00	00		
	•									•			
Bit 1 to 0	BSH	l (Bitmap Scale H	orizontal)										
	Sets	horizontal zoom	ratio of bit	map dra	aw								
	00	x1											
	01	x2											
	10	x1/2											
	01	Reserved											
Bit 3 to 2	BSV	' (Bitmap Scale V	ertical)										
		vertical zoom rat		ap draw									
	00	x1											
	01	x2											
	10	x1/2											
	01	Reserved											
Bit 8		Clip X enable)											
		X coordinates cl	pping mod	de									
	0	Disabled											
	1	Enabled											
Bit 9	CY (Clip Y enable)											
	Sets	Y coordinates cl	pping mod	de									
	0	Disabled											
	1	Enabled											
Bit 16 and 15	CF (Color Format)											
		drawing color for	mat										
	00	Indirect color m		s/pixel)									
	01	Direct color mo											
Bit 20	7P (Z Precision)											
2.1.20		the precision of t	he 7 value	h haell c	or erac	sina hidden v	nland	29					
	0013	16 bits/pixel		5 USEU I			plane	.0					
		8 bits/pixel											
Register address	DrawBa	rawBaseAddress + 424 _H											
---------------------	----------	-----------------------------------	----------	----	----	-------------------	------------	-----	----	-------	----	---	---
Bit number	31 30 29	28 27 26 25 24	23 22 21	20	19	18 17 16 15 14 13	12 11 10 9	8 7	6	5 4 3	2	1	0
Bit field name		LW		ΒP	ΒL		LOG	BM	zw	ZCL	ZC		
R/W		RW		RW	RW		RW	RW	RW	RW	RW		
Initial value		00000		0	0		0011	0	0	0000	0		

MDR1 (Mode Register for LINE)

This register sets the mode of line and pixel drawing.

Please set ZC bit (bit 2) to 0 when draw BltCopyAltAlphaBlendP command.

Bit 2	ZC (Z	Compare mode)
	Sets Z	comparison mode
	0	Disabled
	1	Enabled
Bit 5 to 3	ZCL (Z	Compare Logic)
	Selects	s type of Z comparison
	000	NEVER
	001	ALWAYS
	010	LESS
	011	LEQUAL
	100	EQUAL
	101	GEQUAL
	110	GREATER
	111	NOTEQUAL
Bit 6	ZW (Z	Write mode)
	Sets Z	write mode
	0	Writes Z values.
	1	Not write Z values.
Bit 8 to 7		end Mode)
	-	end mode
	00	
		Normal (source copy)
	01	Alpha blending
	10	Drawing with logic operation
	11	Reserved
Bit 12 to 9	LOG (l	_ogical operation)
	Sets ty	pe of logic operation
	0000	CLEAR
	0001	AND
	0010	AND REVERSE
	0011	COPY
	0100	AND INVERTED

MB86276 'LIME' GDC Specifications Rev1.1a 252

	0101	NOP
	0110	XOR
	0111	OR
	1000	NOR
	1001	EQUIV
	1010	INVERT
	1011	OR REVERSE
	1100	COPY INVERTED
	1101	OR INVERTED
	1110	NAND
	1111	SET
Bit 19	BL (Bro	ken Line)
	Selects	line type
	0	Solid line
	1	Broken line
Bit 20	BP (Bro	ken line Period)
	Selects	broken line cycle
	0:	32 bits
	1:	24 bits
Bit 28 to 24	LW (Lin	e Width)
	Sets line	e width for drawing line
	00000	1 pixel
	00001	2 pixels
	:	:

11111 32 pixels

IVI L		giau		i oiygoiij								
	Register address	Draw	rawBaseAddress + 428 _H									
	Bit number	31 30	29 28	27-26-25-24-23-22-21-20-19 18 17 16 15 14 13	12 11 10 9	8 7	6	5 4 3	2	1 (0	
	Bit field name		TT		LOG	BM	zw	ZCL	ZC	S	SM	
	R/W	W0	RW		RW	RW	RW	RW	RW	R	۲W	
	Initial value		00		0011	0	0	0000	0	(0	

MDR2 (Mode Register for Polygon)

This register sets the polygon drawing mode.

Bit 0	SM (Shading Mode)
	Sets	shading mode
	0	Flat shading
	1	Gouraud shading
Bit 2	ZC (Z	Z Compare mode)
	Sets	Z comparison mode
	0	Disabled
	1	Enabled
Bit 5 to 3	ZCL	(Z Compare Logic)
	Seleo	cts type of Z comparison
	000	NEVER
	001	ALWAYS
	010	LESS
	011	LEQUAL
	100	EQUAL
	101	GEQUAL
	110	GREATER
	111	NOTEQUAL
Bit 6	ZW (Z Write mask)
	Sets	Z write mode
	0	Writes Z values
	1	Not write Z values
Bit 8 to 7		Blend Mode)
		blend mode
	00	Normal (source copy)
	01	Alpha blending
	10	Drawing with logic operation
	11	Reserved
Bit 12 to 9	LOG	(Logical operation)
	Sets	type of logic operation

254

- 0000 CLEAR
- 0001 AND
- 0010 AND REVERSE
- 0011 COPY
- 0100 AND INVERTED
- 0101 NOP
- 0110 XOR
- 0111 OR
- 1000 NOR
- 1001 EQUIV
- 1010 INVERT
- 1011 OR REVERSE
- 1100 COPY INVERTED
- 1101 OR INVERTED
- 1110 NAND
- 1111 SET

Bit 29 to 28 TT (Texture-Tile Select)

Selects texture or tile pattern

- 00 Neither used
- 01 Enabled tiling
- 10 Enabled texture
- 11 Reserved

 	giotor for fortaloj											
Register address	DrawBaseAddress + 42C _H	awBaseAddress + 42C _H										
Bit number	31 30 29 28 27 26 25 24 23 22	21 20	19 18	17 16	15 14 13 12	11 10	98	76	5	4	3	2 1 0
Bit field name		TAB		TBL		TWS	TWT		TF		тс	
R/W		RW		RW		RW	RW		RW		RW	
Initial value		00		00		00	00		0		0	

MDR3 (Mode Register for Texture)

This register sets the texture mapping mode.

Bit 3	TC (Texture coordinates Correct)
	Sets texture coordinates correction mode
	0 Disabled
	1 Reserved
Bit 5	TF (Texture Filtering)
	Sets type of texture interpolation (filtering)
	0 Point sampling
	1 Bi-linear filtering
Bit 9 and 8	TWT (Texture Wrap T)
	Sets type of texture coordinates T direction wrapping
	00 Clamp
	01 Repeat
	10 Border
	11 Reserved
Bit 11 and 10	TWS (Texture Wrap S)
	Sets type of texture coordinates S direction wrapping
	00 Clamp
	01 Repeat
	10 Border
	11 Reserved
Bit 17 and 16	TBL (Texture Blend mode)
	Sets texture blending mode
	00 De-curl
	01 Modulate
	10 Stencil
	11 Reserved
Bit 21 and 20	TAB (Texture Alpha Blend mode)
	Sets texture blending mode
	The stencil mode and the stencil alpha mode are enabled only when the MDR2 register blend mode (BM) is set to the alpha blending mode. If it is not set to the alpha blending mode, the stencil mode and stencil alpha mode perform the same function as the normal mode.
MB86276 'LIME' Rev1.1a	GDC Specifications 256

- 00 Normal
- 01 Stencil
- 10 Stencil alpha
- 11 Reserved

MDR4 (Mode Register for BLT)

Register address	DrawBaseAddress + 430 _H					
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13	12 11 10 9	8 7	6 5 4 3 2	1	0
Bit field name		LOG	BM		ΤE	
R/W		RW	RW		RW	
Initial value		0011	00		0	

This register controls the BLT mode.

Bit 1 TE (Transparent Enable)

Sets transparent mode

- 0: Not perform transparent processing
- 1: Not draw pixels that corresponds to set transparent color in BLT (transparancy copy)

Note: Set the blend mode (BM) to normal.

Bit 8 to 7 BM (Blend Mode)

Sets blend mode

- 00 Normal (source copy)
- 01 Reserved
- 10 Drawing with logic operation
- 11 Reserved
- Bit 12 to 9 LOG (Logical operation)

Sets logic operation

- 0000 CLEAR
- 0001 AND
- 0010 AND REVERSE
- 0011 COPY
- 0100 AND INVERTED
- 0101 NOP
- 0110 XOR
- 0111 OR
- 1000 NOR
- 1001 EQUIV
- 1010 INVERT
- 1011 OR REVERSE
- 1100 COPY INVERTED
- 1101 OR INVERTED
- 1110 NAND
- 1111 SET

FBR (Frame buffer Base)

Register address	DrawBaseAddres	s + 440 _H	
Bit number	31 30 29 28 27 26	25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6	5 4 3 2 1 0
Bit field name		FBASE	
R/W		RW	R0
Initial value	Don't care	0	

This register stores the base address of the drawing frame.

XRES (X Resolution)

Register address	DrawBaseAddress + 444 _H	
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12	11 10 9 8 7 6 5 4 3 2 1 0
Bit field name		XRES
R/W		RW
Initial value		Don't care

This register sets the drawing frame horizontal resolution.

ZBR (Z buffer Base)

Register address	DrawBaseAddres	ss + 448 _H	
Bit number	25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6	5 4 3 2 1 0	
Bit field name		ZBASE	
R/W		RW	R0
Initial value		Don't care	0

This register sets the Z buffer base address.

TBR (Texture memory Base)

Register address	DrawBaseAddres	awBaseAddress + 44C _H									
Bit number	31 30 29 28 27 26	25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6	5 4 3 2 1 0								
Bit field name		TBASE									
R/W	RW	R0									
Initial value Don't care											

This register sets the texture memory base address.

PFBR (2D Polygon Flag-Buffer Base)

Register address	DrawBaseAddre	ss + 450 _H	
Bit number	31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6	5 4 3 2 1 0
Bit field name	PFBASE		
R/W		RW	R0
Initial value		Don't care	0

This register sets the polygon flag buffer base address.

CXMIN (Clip X minimum)

Register address	DrawBaseAddress + 454 _H	
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12	11-10-9-8-7-6-5-4-3-2-1-0
Bit field name		CLIPXMIN
R/W		RW
Initial value		Don't care

This register sets the clip frame minimum X position.

CXMAX (Clip X maximum)

Register address	DrawBaseAddress + 458 _H	
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12	11-10-9-8-7-6-5-4-3-2-1-0
Bit field name		CLIPXMAX
R/W		RW
Initial value		Don't care

This register sets the clip frame maximum X position.

CYMIN (Clip Y minimum)

Register address	DrawBaseAddress + 45C _H	
	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12	11-10-9-8-7-6-5-4-3-2-1-0
Bit field name		CLIPYMIN
R/W		RW
Initial value		Don't care

This register sets the clip frame minimum Y position.

CYMAX (Clip Y maximum)

Register address	DrawBaseAddress + 460 _H	
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12	11 10 9 8 7 6 5 4 3 2 1 0
Bit field name		CLIPYMAX
R/W		RW
Initial value		Don't care

This register sets the clip frame maximum Y position.

260

TXS (Texture Size)

Register address	DrawBaseAddress + 464 _H			
Bit number	31 30 29	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0		
Bit field name		TXSN TXSM		
R/W		RW		RW
Initial value		00001000000		00001000000

This register specifies the texture size (m, n).

Bit 12 to 0 TXSM (Texture Size M)

Sets horizontal texture size. Any power of 2 between 4 and 4096 can be used. Values that are not a power of 2 cannot be used.

0_0000_0000_0100	M=4	0_0010_0000_0000	M=512
0_0000_0000_1000	M=8	0_0100_0000_0000	M=1024
0_0000_0001_0000	M=16	0_1000_0000_0000	M=2048
0_0000_0010_0000	M=32	1_0000_0000_0000	M=4096
0_0000_0100_0000	M=64		
0_0000_1000_0000	M=128		
0_0001_0000_0000	M=256	Other than the above	Setting disabled

Bit 28 to 16 TXSN (Texture Size N)

Sets vertical texture size. Any power of 2 between 4 and 4096 can be used. Values that are not a power of 2 cannot be used.

0_0000_0000_0100	N=4	0_0010_0000_0000	N=512
0_0000_0000_1000	N=8	0_0100_0000_0000	N=1024
0_0000_0001_0000	N=16	0_1000_0000_0000	N=2048
0_0000_0010_0000	N=32	1_0000_0000_0000	N=4096
0_0000_0100_0000	N=64		
0_0000_1000_0000	N=128		
0_0001_0000_0000	N=256	Other than the above	Setting disabled

TIS (Tile Size)

Register address	DrawBaseAddress + 468 _H		
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19	18 17 16 15 14 13 12 11 10 9 8 7	6 5 4 3 2 1 0
Bit field name	TISN	1	TISM
R/W	RW		RW
Initial value	10000	00	1000000

This register specifies the tile size (m, n).

Bit 6 to 0 TISM (Title Size M)

Sets horizontal tile size. Any power of 2 between 4 and 64 can be used. Values that are not a power of 2 cannot be used.

0.000100	M=4
0001000	M=8
0010000	M=16
0100000	M=32
1000000	M=64
Other than the above	Setting disabled

Bit 22 to 16 TISN (Title Size N)

Sets vertical tile size. Any power of 2 between 4 and 64 can be used. Values that are not a power of 2 cannot be used.

0000100	N=4
0001000	N=8
0010000	N=16
0100000	N=32
1000000	N=64
Other than the above	Setting disabled

TOA (Texture Buffer Offset address)

Register address	DrawBaseAddress + 46C _H	
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13	12 11 10 9 8 7 6 5 4 3 2 1 0
Bit field name		ХВО
R/W		RW
Initial value		Don't care

This register sets the texture buffer offset address. Using this offset value, texture patterns can be referred to the texture buffer memory.

Specify the word-aligned byte address (16 bits). (Bit 0 is always "0".)

ABR (Alpha map Base)

Register address	DrawBaseAddress + 474 _H			
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
Bit field name	ABASE			
R/W		RW	R0	
Initial value		Don't care	0	

This register sets the base address of the alpha map.

FC (Foreground Color)

Register address	DrawBaseAddress + 480 _H	
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
Bit field name		FGC
R/W		RW
Initial value		0

This register sets the drawing foreground color. This color is for the object color for flat shading and foreground color for bitmap drawing and broken line drawing. All bits set to "1" are drawn in the color set at this register.

8 bit color mode:

Bit 7 to 0	FGC8 (Foreground 8 bit Color)
	Sets the indirect color for the foreground (color index code).
Bit 31 to 8	These bits are not used.

16 bit color mode:

Bit 15 to 0	FGC16 (Foreground 16 bit Color)
	This field sets the 16-bit direct color for the foreground.
	Note that the handling of bit 15 is different from that in ORCHID.
	Up to ORCHID, bit 15 is "0" for other than bit map and rectangular drawing, but starting with LIME GDC, the setting value is reflected in memory as is. This bit is also reflected in bit 15 of the 16-bit color at Gouraud shading.
D:1 04 1- 40	

Bit 31 to 16 These bits are not used.

BC (Background Color)

	()					
Register address	DrawBaseAddress + 484 _H					
Bit number	31:30:29:28:27-26:25:24:23:22:21:20:19:18:17:16 15 14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0					
Bit field name	BGC8/16					
R/W	RW					
Initial value	0					

This register sets the drawing frame background color. This color is used for the background color of bitmap drawing and broken line drawing. At bitmap drawing, all bits set to "0" are drawn in the color set at this register.

BT bit of this register allows the background color of be transparent (no drawing).

8 bit color mode:

Bit 7 to 0	BGC8 (Background 8 bit Color)		
	Sets the indirect color for the background (color index code)		
Bit 14 to 8	Not used		
Bit 15	BT (Background Transparency)		
	Sets the transparent mode for the background color		
	0 Background drawn using color set for BGC field		
	1 Background not drawn (transparent)		
Bit 31 to 16	Not used		

16 bit color mode:

Bit 14 to 0	BGC16 (Background 16 bit Color)		
	Sets	16-bit direct color (RGB) for the background	
Bit 15	BT (Background Transparency)		
	Sets the transparent mode for the background color		
	0	Background drawn using color set for BGC field	
	1	Background not drawn (transparent)	

Bit 31 to 16 Not used

ALF (Alpha Factor)

Register address	DrawBaseAddress + 488 _H	
Bit number	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
Bit field name		A
R/W		RW
Initial value		0

This register sets the alpha blending coefficient.

BLP (Broken Line Pattern)

Register address	DrawBaseAddress + 48C _H			
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0			
Bit field name	BLP			
R/W	RW			
Initial value 0				

This register sets the broken-line pattern. The bit 1 set in the broken-line pattern is drawn in the foreground color and bit 0 is drawn in the background color. The line pattern for 1 pixel line is laid out in the direction of MSB to LSB and when it reaches LSB, it goes back to MSB. The BLPO register manages the bit numbers of the broken-line pattern. 32 or 24 bits can be selected as the repetition of the broken-line pattern by the BP bit of the MDR1 register. When 24 bits are selected, bits 23 to 0 of the BLP register are used.

TBC (Texture Border Color)

Register address	DrawBaseAddress + 494 _H		
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16 15 14:13:12:11:10: 9:8:7:6:5:4:3:2:1:0		
Bit field name	BC8/16		
R/W	RW		
Initial value 0			

This register sets the border color for texture mapping.

8 bit color mode:

Bit 7 to 0 BC8 (Border Color)

Sets the 8-bit direct color for the texture border color

16 bit color mode:

Bit 15 to 0 BC16 (Border Color) Sets the 16-bit direct color for the texture border color Bit15 is used for controlling a stencil and stencil alpha

BLPO (Broken Line Pattern Offset)

Register address	DrawBaseAddress + 3E0 _H	
	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10:9:8:7:6:5	4 3 2 1 0
Bit field name		BCR
R/W		RW
Initial value		11111

This register stores the bit number of the broken-line pattern set to BLP registers, for broken line drawing. This value is decremented at each pixel drawing. Broken line can be drawn starting from any starting position of the specified broken-line pattern by setting any value at this register. When no write is performed, the position of broken-line pattern is sustained.

12.5.3 Triangle drawing registers

Each register is used by the drawing commands. The registers cannot be accessed from the CPU or using the *SetRegister* command.

(XY coordinates register)

Register	Address	31	30	29	28	27-26-25-24-23-22-21-20-19-18-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-1-0		
Ys	0000_{H}	S	S	S	S	Int	Frac	
Xs	0004_{H}	S	S	S	S	Int	Frac	
dXdy	0008_{H}	S	S	S	S	Int	Frac	
XUs	$000c_{\text{H}}$	S	S	S	S	Int	Frac	
dXUdy	0010 _H	S	S	S	S	Int	Frac	
XLs	0014_{H}	S	S	S	S	Int	Frac	
dXLdy	0018_{H}	S	S	S	S	Int	Frac	
USN	$001b_{\text{H}}$	0	0	0	0	Int	0	
LSN	0020_{H}	0	0	0	0	Int	0	

Address	Offset value from DrawBaseAddress
S	Sign bit or sign extension
0	Not used or 0 extension
Int	Integer or integer part of fixed point data
Frac	Fraction part of fixed point data

Sets (X, Y) coordinates for triangle drawing

Ys	Y coordinates start position of long edge					
Xs	X coordinates start position of long edge corresponding to Ys					
dXdy	X DDA value of long edge direction					
XUs	X coordinates start position of upper edge					
dXUdy	X DDA value of upper edge direction					
XLs	X coordinates start position of lower edge					
dXLdy	X DDA value of lower edge direction					
USN	Count of spans of upper triangle. If this value is "0", the upper triangle is not drawn.					
LSN	Count of spans of lower triangle. If this value is "0", the lower triangle is not drawn.					

(Color setting register)

		<u> </u>	-	. '					-		
				ũ	ũ.			-	7		15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
Rs	0040_{H}	0	0	0	0	:0	-0	0	0	Int	Frac
dRdx	0044_{H}									Int	Frac
dRdy	0048_{H}	S	S	S	ŝ	S	ŝŝs	S	S	Int	Frac
Gs	004C _H	0	0	0	0	:0	-0	0	0	Int	Frac
dGdx	0050_{H}									Int	Frac
dGdy	0054_{H}	S	S	S	S	S	ŝŝŝ	S	S	Int	Frac
Bs	0058 _Н										Frac
dBdx	$005c_{\text{H}}$										Frac
dBdy	0060_{H}	S	S	S	S	S	SS	S	S	Int	Frac
As	0064_{H}		-		-	-	_	-	_	Int	Frac
dAdx	0068_{H}										Frac
dAdy	$006c_{\text{H}}$	S	S	S	S	S	S	S	S	Int	Frac

Address Offset from DrawBaseAddress

S Sign bit or sign extension

0 Not used or 0 extension

Int Integer or integer part of fixed point data

Frac Fraction part of fixed point data

Sets color parameters for triangle drawing. These parameters are enabled in the Gouraud shading mode.

Rs	R value at (Xs, Ys, Zs) of long edge corresponding to Ys					
dRdx	R DDA value of horizontal direction					
dRdy	R DDA value of long edge					
Gs	G value at (Xs, Ys, Zs) of long edge corresponding to Ys					
dGdx	G DDA value of horizontal direction					
dGdy	G DDA value of long edge					
Bs	B value at (Xs, Ys, Zs) of long edge corresponding to Ys					
dBdx	B DDA value of horizontal direction					
dBdy	B DDA value of long edge					
As	Alpha value at (Xs, Ys, Zs) of long edge corresponding to Ys					
dAdx	Alpha DDA value of horizontal direction					
dAdy	Alpha DDA value of long edge					

(Z coordinates register)

Register	Address	31	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15	14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
Zs	0080h	0	Int	Frac
dZdx	0084h	S	Int	Frac
dZdy	008ch	S	Int	Frac

- Address Offset from DrawBaseAddress
- S Sign bit or sign extension
- 0 Not used or 0 extension
- Int Integer or integer part of fixed point data
- Frac Fraction part of fixed point data

Sets Z coordinates for 3D triangle drawing

Zs	Z coordinate start position of long edge
dZdx	Z DDA value of horizontal direction
dZdy	Z DDA value of long edge

(Texture coordinates-setting register)

Register	Address	31	1:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9:8:7:6:5:4:3:2:1:0							
Ss	00c0 _H	S	S	S		Int		Frac		
dSdx	$00c4_{H}$	S	S	S		Int		Frac		
dSdy	$00c8_{H}$	S	S	S		Int		Frac		
Ts	00ссн	S	S	S		Int		Frac		
dTdx	$00d0_{H}$	S	S	S		Int		Frac		
dTdy	$00d4_{H}$	S	S	S		Int		Frac		
Qs					0 0 0 0 Int			Frac		
dQdx					S S S Int			Frac		
dQdy	00e0 _H	S	S	S	S S S S Int			Frac		

Address	Offset from DrawBaseAddress

S Sign bit or sign extension

0 Not used or 0 extension

Int Integer or integer part of fixed point data

Frac Fraction part of fixed point data

Sets texture coordinates parameters for triangle drawing

Ss	S texture coordinates (Xs, Ys, Zs) of long edge corresponding to Ys
dSdx	S DDA value of horizontal direction
dSdy	S DDA value of long edge direction
Ts	T texture coordinates (Xs, Ys, Zs) of long edge corresponding to Ys
dTdx	T DDA value of horizontal direction
dTdy	T DDA value of long edge direction
Qs	Q (Perspective correction value) of texture at (Xs, Ys, Zs) of long edge corresponding to Ys
dQdx	Q DDA value of horizontal direction
dQdy	Q DDA value of long edge direction

12.5.4 Line drawing registers

Each register is used by the drawing commands. The registers cannot be accessed from the CPU or by using the *SetRegister* command.

(Coordinates setting register)

Register	Address	31	30	30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0						
LPN	0140 _H	0	0	0	0	Int	0			
LXs	0144 _H	S	S	S	S	Int	Frac			
LXde	0148 _H	S	S	S	S	SSSSSSSSSSS	t Frac			
LYs	$014c_{H}$	S	S	S	S	Int	Frac			
LYde	0150 _H	S	S	S	S	SSSSSSSSSSSS	t Frac			
LZs	0154 _H	S		Int Frac						
LZde	0158 _H	S				Int	Frac			

Address Offset from DrawBaseAddress

- S Sign bit or sign extension
- 0 Not used or 0 extension
- Int Integer or integer part of fixed point data
- Frac Fraction part of fixed point data

Sets coordinates parameters for line drawing

LPN	Pixel count of principal axis direction
LXs	X coordinates start position of draw line (In principal axis X) Integer value of X coordinates rounded off (In principal axis Y) X coordinates in form of fixed point data
LXde	Inclination data for X coordinates (In principal axis X) Increment or decrement according to drawing direction (In principal axis Y) Fraction part of DX/DY
LYs	Y coordinates start position of draw line (In principal axis X) Y coordinates in form of fixed point data (In principal axis Y) Integer value of Y coordinates rounded off
LYde	Inclination data for Y coordinates (In principal axis X) Fraction part of DY/DX (In principal axis Y) Increment or decrement according to drawing direction
LZs	Z coordinates start position of line drawing line
LZde	Z Inclination

12.5.5 Pixel drawing registers

Each register is used by the drawing commands. The registers cannot be accessed from the CPU or using the *SetRegister* command.

Register	Address	31	1:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9:8:7:6:5:4:3:2:1:0								
PXdc	0180 _H	0	0	0	0	Int	0				
PYdc	0184 _H	0	0	0	0	Int	0				
PZdc	0188 _H	0	0	0	0	Int	0				

Address Offset from DrawBaseAddress

S Sign bit or sign extension

0 Not used or 0 extension

Int Integer or integer part of fixed point data

Frac Fraction part of fixed point data

Sets coordinates parameter for drawing pixel. The foreground color is used.

PXdc	Sets X coordinates position
PYdc	Sets Y coordinates position
PZdc	Sets Z coordinates position

12.5.6 Rectangle drawing registers

Each register is used by the drawing commands. The registers cannot be accessed from the CPU or using the *SetRegister* command.

Register	Address	31	30	29	28	27:26:25:24:23:22:21:20:19:18:17:16	15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0
RXs	0200_{H}	0	0	0	0	Int	0
Rys	0204_{H}	0	0	0	0	Int	0
RsizeX	0208_{H}	0	0	0	0	Int	0
RsizeY	$020c_{H}$	0	0	0	0	Int	0

Address Offset from DrawBaseAddres	SS
------------------------------------	----

S Sign bit or sign extension

0 Not used or 0 extension

Int Integer or integer part of fixed point data

Frac Fraction part of fixed point data

Sets coordinates parameters for rectangle drawing. The foreground color is used.

RXs	Sets the X coordinates of top left vertex
Rys	Sets the Y coordinates of top left vertex
RsizeX	Sets horizontal size
RsizeY	Sets vertical size

270

12.5.7 Blt registers

Sets the parameters of each register as described below:

Set the Tcolor register with the *SetRegister* command.

Note that the Tcolor register cannot be set at access from the CPU and by drawing commands.

Each register except the Tcolor register is set by executing a drawing command.

Note that access from the CPU and the **SetRegister** command cannot be used.

Register	Address	31	30	29	28	27:26:25	24:23:22:21:20:19:18:17	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SADDR	0240_{H}	0	0	0	0	0 0 0 Address		
SStride	0244_{H}	0	0	0	0		Int	0
SRXs	0248_{H}	0	0	0	0		Int	0
SRYs	$024c_{H}$	0	0	0	0		Int	0
DADDR	0250_{H}	0	0	0	0	0 0 0		Address
DStride	0254_{H}	0	0	0	0		Int	0
DRXs	0258_{H}	0	0	0	0		Int	0
DRYs	025c _H	0	0	0	0		Int	0
BRsizeX	0260_{H}	0	0	0	0		Int	0
BRsizeY	0264_{H}	0	0	0	0		Int	0
TColor	0280_{H}	0					0	Color

Address Offset from DrawBaseAddress

S Sign bit or sign extension

0 Not used or 0 extension

Int Integer or integer part of fixed point data

Frac Fraction part of fixed point data

Sets parameters for Blt operations

SADDR	Sets start address of source rectangle area in byte address						
SStride	Sets stride of source						
SRXs	Sets X coordinates start position of source rectangle area						
SRYs	Sets Y coordinates start position of source rectangle area						
DADDR	Sets start address of destination rectangle area in byte address						
DStride	Sets stride of destination						
DRXs	Sets X coordinates start position of destination rectangle area						
DRYs	Sets Y coordinates start position of destination rectangle area						
BRsizeX	Sets horizontal size of rectangle						
BRsizeY	Sets vertical size of rectangle						
Tcolor	Sets transparent color						
	For indirect color, set a palette code in the lower 8 bits.						

12.5.8 2D line with XY setup drawing registers

Each register is used by the drawing commands. The registers cannot be accessed from the CPU.

Register	Address	31	30	29	28	27 26 25 24 23 22 21 20 19 18 17 16	15:14:13:12:11:10:9:8:7:6:5:4:3:2:1:0
LX0dc	0540 _H	0	0	0	0	Int	0
LY0dc	0544 _H	0	0	0	0	Int	0
LX1dc	0548 _H	0	0	0	0	Int	0
LY1dc	054сн	0	0	0	0	Int	0

Address Offset from DrawBaseAddress

S Sign bit or sign extension

0 Not used or 0 extension

Int Integer or integer part of fixed point data

Frac Fraction part of fixed point data

Sets coordinates of line end points for 2D Line with XY setup drawing

LX0dc	Sets X coordinates of vertex V0
LY0dc	Sets Y coordinates of vertex V0
LX1dc	Sets X coordinates of vertex V1
LY1dc	Sets Y coordinates of vertex V1

12.5.9 2D triangle with XY setup drawing registers

Each register is used by the drawing commands. The registers cannot be accessed from the CPU or using the *SetRegister* command.

Register	Address	31	30	29	28	27-26-25-24-23-22-21-20-19-18-17-16	15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0
X0dc	0580h	0	0	0	0	Int	0
Y0dc	0584h	0	0	0	0	Int	0
X1dc	0588h	0	0	0	0	Int	0
Y1dc	058ch	0	0	0	0	Int	0
X2dc	0590h	0	0	0	0	Int	0
Y2dc	0594h	0	0	0	0	Int	0

Address Offset from DrawBaseAddress

- S Sign bit or sign extension
- 0 Not used or 0 extension
- Int Integer or integer part of fixed point data
- Frac Fraction part of fixed point data

Sets coordinates of three vertices for 2D Triangle with XY setup drawing

X0dc	Sets X coordinates of vertex V0
Y0dc	Sets Y coordinates of vertex V0
X1dc	Sets X coordinates of vertex V1
Y1dc	Sets Y coordinates of vertex V1
X2dc	Sets X coordinates of vertex V2
Y2dc	Sets Y coordinates of vertex V2

12.5.10 Display list FIFO registers

Register address	DrawBaseAddress+ 4A0 _H
Bit number	31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0
Bit field name	DFIFO
R/W	W
Initial value	Don't care

DFIFO (Displaylist FIFO)

FIFO registers for Display List transfer. The Display List FIFO is 32 entries deep.

MB86276 'LIME' GDC Specifications Rev1.1a

FUJITSU SEMICONDUCTOR CONFIDENTIAL 13 TIMING DIAGRAM

13.1 Graphics Memory Interface

The LIME GDC access timing and graphics memory access timing are explained here.

13.1.1 Timing of read access to same row address

Timing of Read Access to Same Row Address

The above timing diagram shows that read access is made four times from LIME to the same row address of SDRAM. The *ACTV* command is issued and then the *READ* command is issued after TRCD elapses. Then data that is output after the elapse of CL after the *READ* command is issued is captured into LIME.

13.1.2 Timing of read access to different row addresses

Timing of Read Access to Different Row Addresses

The above timing diagram shows that read access is made from LIME to different row addresses of SDRAM. The first and next address to be read fall across an SDRAM page boundary, so the *Pre-charge* command is issued at the timing satisfying TRAS, and then after the elapse of TRP, the *ACTV* command is reissued, and then the *READ* command is issued.

Timing of Write Access to Same Row Address

The above timing diagram shows that write access is made form times form LIME to the same row address of SDRAM.

The **ACTV** command is issued, and then after the elapse of TRCD, the **WRITE** command is issued to write to SDRAM.

Timing of Write Access to Different Row Addresses

The above timing diagram shows that write access is made from LIME to different row addresses of SDRAM. The first and next address to be write fall across an SDRAM page boundary, so the *Pre-charge* command is issued at the timing satisfying TRAS, and then after the elapse of TRP, the *ACTV* command is reissued, and then the *WRITE* command is issued.

Timing of Read/Write Access to Same Row Address

The above timing diagram shows that write access is made immediately after read access is made from LIME to the same row address of SDRAM.

Read data is output from SDRAM, LOWD elapses, and then the WRITE command is issued.

279

13.1.6 Delay between ACTV commands

TRRD: RAS to RAS Bank Active Delay Time

Delay between ACTV Commands

The ACTV command is issued from LIME GDC to the row address of SDRAM after the elapse of *TRRD* after issuance of the previous *ACTV* command.

13.1.7 Delay between Refresh command and next ACTV command

Delay between Refresh Command and Next ACTV Command

The ACTV command is issued after the elapse of TRC after issuance of the Refresh command.

280

FUJITSU SEMICONDUCTOR CONFIDENTIAL 13.2 Display Timing

13.2.1 Non-interlace mode

Non-interlace Timing

In the above diagram, VTR, HDP, etc., are the setting values of their associated registers.

The VSYNC/frame interrupt is asserted when display of the last raster ends. When updating display parameters, synchronize with the frame interrupt so no display disturbance occurs. Calculation for the next frame is started immediately after the vertical synchronization pulse is asserted, so the parameters must be updated by the time that calculation is started.

VSYNC is output 1 dot clock faster than HSYNC.

13.2.2 Interlace video mode

Interlace Video Timing

In the above diagram, VTR, HDP, etc., are the setting values of their associated registers.

The interlace mode also operates at the same timing as the interlace video mode. The only difference between the two modes is the output image data.

13.2.3 Composite synchronous signal

When the EEQ bit of the DCM register is "0", the CSYNC signal output waveform is as shown below.

Composite Synchronous Signal without Equalizing Pulse

When the EEQ bit of the DCM register is "1", the equalizing pulse is inserted into the CSYNC signal, producing the waveform shown below.

Composite Synchronous Signal with Equalizing Pulse

The equalizing pulse is inserted when the vertical blanking time period starts. It is also inserted three times after the vertical synchronization time period has elapsed.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 13.3 Host interface Timing

13.3.1 CPU read/write timing diagram in SH3 mode (Normally Not Ready Mode)

- T1: Read/write start cycle (XRDY in wait state)
- Tsw*: Software wait insertion cycle (1 cycle setting)
- Thw*: Hardware wait insertion cycle (XRDY cancels the wait state after the preparations)
- T2: Read/write end cycle (XRDY ends in wait state)

Fig. Read/Write Timing Diagram for SH3 (Normally Not Ready Mode)

13.3.2

(MODE[2:0]=000, RDY_MODE=1, BS_MODE=0)

CPU read/write timing diagram in SH3 mode (Normally Ready Mode)

x: Soft Wait (2 cycles) in SH3 mode

- T1: Read/write start cycle (XRDY in not wait state)
- Tsw*: Software wait insertion cycle (2-cycle setting required)
- Thw*: Hardware wait insertion cycle (In hardware state when the immediate accessing is disabled)
- T2: Read/write end cycle (XRDY ends in not wait state)

Fig. Read/Write Timing Diagram for SH3 (Normally Ready Mode)

13.3.3

(MODE[2:0]=001, RDY_MODE=0, BS_MODE=0)

CPU read/write timing diagram in SH4 mode (Normally Not Ready Mode)

- T1: Read/write start cycle (XRDY in the not ready state)
- Tsw*: Software wait insertion cycle (1 cycle)
- Twh*: Hardware wait insertion cycle (XRDY asserts Ready after the preparations)
- T2: Read/write end cycle (XRDY ends in not ready state)

Fig. Read/Write Timing Diagram for SH4 Mode (Normally Not Ready Mode)

286

13.3.4 CPU read/write timing diagram in SH4 mode (Normally Ready Mode)

(MODE[2:0]=001, RDY_MODE=1, BS_MODE=0)

O: XRDY sampling in SH4 mode \times : Soft Wait (2 cycles) in SH4 mode

- T1: Read/write start cycle (XRDY in ready state)
- Tsw*: Software wait insertion cycle (2-cycle setting required)
- Twh*: Hardware wait insertion cycle (XRDY asserts Ready after the preparations)
- T2: Read/write end cycle (XRDY ends in ready state.)

Fig. CPU Read/Write Timing Diagram for SH4 Mode (Normally Ready Mode)

(MODE[2:0]=010, RDY_MODE=0, BS_MODE=0)

Read/write start cycle (XREADY in not ready state)

O: XREADY sampling in V832 mode \times : Soft Wait (1 cycle) in V832 mode

Tsw*: Software wait insertion cycle

T1:

- Twh*: Hardware wait insertion cycle (XREADY asserts Ready after the preparations)
- T2: Read/write end cycle (XREADY ends in not ready state)
 - Notes: 1.The XxxBEN signal is used only for a write from the CPU; it is not used for a read from the CPU.

2. The CPU always inserts one cycle wait after read access.

Fig. Read/Write Timing Diagram in V832 Mode (Normally Not Ready Mode)

13.3.6 CPU read/write timing diagram in V832 mode (Normally Ready Mode)

O: XREADY sampling in V832 mode ×: Soft Wait (2 cycles) in V832 mode

- T1: Read/write start cycle (XREADY in ready state)
- Tsw*: Software wait insertion cycle (2-cycle setting required)
- Twh*: Hardware wait insertion cycle (XREADY asserts Ready after the preparations)
- T2: Read/write end cycle (XREADY ends in ready state)
 - Notes: 1.The XxxBEN signal is used only for a write from the CPU; it is not used for a read from the CPU.
 - 2. The CPU always inserts one cycle wait after read access.

Fig. Read/Write Timing Diagram in V832 Mode (Normally Ready Mode)

13.3.7 CPU read/write timing diagram in SPARClite (Normally Not Ready Mode)

- T1: Read/write start cycle (READY# in not ready state)
- Tsw*: Software wait insertion cycle
- Twh*: Hardware wait insertion cycle (READY# asserts Ready after the preparations)
- T2: Read/write end cycle (READY# ends in not ready state)

Note: BE# signal is used only for a write from the CPU; it is not used for a read from the CPU.

Fig. Read/Write Timing Diagram in SPARClite (Normally Not Ready Mode)

13.3.8 CPU read/write timing diagram in SPARClite (Normally Ready Mode)

T1: Read/write start cycle (READY# in ready state)

Tsw*: Software wait insertion cycle (2-cycle setting required)

- Twh*: Hardware wait insertion cycle (READY# asserts Ready after the preparations)
- T2: Read/write end cycle (READY# ends in ready state)

Note: BE# signal is used only for a write from the CPU; it is not used for a read from the CPU.

Fig. Read/Write Timing Diagram in SPARClite (Normally Ready Mode)

13.3.9 SH4 single-address DMA write (transfer of 1 long word)

- O: DREQ sampling and channel priority determination for SH mode (DREQ = level detection)
- *1: In the cycle steal mode, even when DREQ is already asserted at the 2nd DREQ sampling, the right to use the bus is returned to the CPU temporarily. In the burst mode, DMAC secures the right to use the bus unless DREQ is negated.

Fig. SH4 Single-address DMA Write (Transfer of 1 Long Word)

CORAL writes data according to the DTACK assert timing. When data cannot be received, the DREQ signal is automatically negated. And then the DREQ signal is reasserted as soon as data reception is ready.

Fig. SH4 Single-address DMA Write (Transfer of 8 Long Words)

After the CPU has asserted DRACK, CORAL negates DREQ and receives 32-byte data in line with the DTACK assertion timing. As soon as the next data is ready to be received, CORAL reasserts DREQ but the reassertion timing depends on the internal status.

For the CORAL, the read/write operation is performed according to the SRAM protocol.

Fig. SH3/4 Dual-address DMA (Transfer of 1 Long Word)

In the dual-address mode, the DREQ signal is kept asserted until the transfer ends by default. Consequently, when CORAL cannot return the ready signal immediately, in order to negate the DREQ signal set the DBM register.

13.3.12 SH3/4 dual-address DMA (transfer of 8 long words)

For the CORAL, the read/write operation is performed according to the SRAM protocol.

Fig. SH3/4 Dual-address DMA (Transfer of 8 Long Words)

In the dual-address mode, the DREQ signal is kept asserted until the transfer ends by default. Consequently, when CORAL cannot return the ready signal immediately, in order to negate the DREQ signal set the DBM register.

13.3.13 V832 DMA transfer

For the CORAL, the read/write operation is performed according to the SRAM protocol.

Fig. V832 DMA Transfer

In the dual-address mode, the DREQ signal is kept asserted until the transfer ends by default. Consequently, when CORAL cannot return the ready signal immediately, in order to negate the DREQ signal set the DBM register.

O: DREQ sampling and channel priority determination for SH mode (DREQ = level detection)

Fig. SH4 Single-address DMA Transfer End Timing

DREQ is negated three cycles after DRACK is written as the last data.

13.3.15 SH3/4 dual-address DMA transfer end timing

For the CORAL, the read/write operation is performed according to the SRAM protocol.

Fig. SH3/4 Dual-address DMA Transfer End Timing

DREQ is negated three cycles after DRACK is written as the last data.

Note: When the dual address mode (DMA) is used, the DTACK signal is not used.

13.3.16 V832 DMA transfer end timing

For the CORAL, the read/write operation is performed according to the SRAM protocol.

Fig. V832 DMA Transfer End Timing

DMMAK and XTC are logic ANDed inside CORAL to end DMA.

Fig. DREQ Negate Timing for Each Transfer

At each DMA transfer, DREQ is negated and then reasserted at the next cycle.

Only the FIFO address can be used as the destination address.

When CORAL cannot receive data immediately, DREQ negation continues. At that time, the negate timing is not only above diagram.

Fig. Dual-address DMA (without ACK) End Timing

Example: DMA operation when DMA transfer performed twice

- (1) The CPU accesses the DREQ issue register (DRQ) of Coral to issue DREQ.
- (2) The right to use bus is transferred from the CPU to the DMAC.
- (3) In the first DMAC cycle, write is performed to CORAL and DREQ is negated; DREQ is reasserted in the next cycle.
- (4) The right to use bus is returned to the CPU and the DREQ edge is detected, so the right to use bus is transferred to the DMAC.
- (5) The second write operation is performed and DREQ is negated, but DREQ is reasserted because CORAL does not recognize that the transfer has ended.
- (6) The right to use bus is transferred to the CPU, so the CPU writes to the DTS register of CORAL to negate DREQ.

13.3.19 CPU write timing diagram in 16bit CPU mode (Normally Not Ready Mode)

FUJITSU SEMICONDUCTOR CONFIDENTIAL

MB86276 'LIME' GDC Specifications Rev1.1a

13.3.20 CPU read timing diagram in 16bit CPU mode (Normally Not Ready Mode)

FUJITSU SEMICONDUCTOR CONFIDENTIAL

MB86276 'LIME' GDC Specifications Rev1.1a

13.3.22	CPU read timing diagram in	16bit AD-MUX CPU mode (Norma	ly Not Ready Mode)
---------	----------------------------	------------------------------	--------------------

MB86276 'LIME' GDC Specifications Rev1.1a

MB86276 'LIME' GDC Specifications Rev1.1a

13.3.24 CPU read timing diagram in 32bit AD-MUX CPU mode (Normally Not Ready Mode)

MB86276 'LIME' GDC Specifications Rev1.1a

FUJITSU SEMICONDUCTOR CONFIDENTIAL 14 ELECTRICAL CHARACTERISTICS

14.1 Introduction

The values in this chapter are the final specification for LIME.

14.2 Maximum Rating

Maximum Rating

Parameter	Symbol	Maximum rating	Unit
Power supply voltage	V _{DDL} ^{*1} V _{DDH}	-0.5 < V _{DDL} < 2.5 -0.5 < V _{DDH} < 4.0	V
Input voltage	VI	-0.5 < V _I < V _{DDH} +0.5 (<4.0)	V
Output current	lo	±13	mA
Ambient for storage temperature	TST	-55 < TST < +125	°C

*1 Includes PLL power supply

<Notes>

- Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc) in excess of absolute maximum ratings. Do not exceed these ratings.
- Do not directly connect output pins or bidirectional pins of IC products to each other or VDD or VSS to avoid the breakdown of the device. However direct connection of the output pins or bidirectional pins to each other is possible, if the output pins are designed to avoid a conflict in a timing.
- Because semiconductor devices are particularly susceptible to damaged by static electricity, you must take the measure like ground all fixtures and instruments.
- In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss. When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage does not exceed the maximum rating.

FUJITSU SEMICONDUCTOR CONFIDENTIAL 14.3 Recommended Operating Conditions

14.3.1 Recommended operating conditions

Parameter	Symbol		Unit		
Farameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{DDL} *1	1.65	1.8	1.95	V
	V _{DDH}	3.0	3.3	3.6	v
Input voltage (High level)	V _{IH}	2.0		V _{DDH} +0.3	V
Input voltage (low level)	V _{IL}	-0.3		0.8	V
Ambient temperature for operation	ТА	-40		85	°C

Recommended Operating Conditions

*1 Includes PLL power supply

<Note>

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the manual. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

14.3.2 Note at power-on

- There is no restriction on the sequence of power-on/power-off between V_{DDL} and V_{DDH} . However, do not apply only V_{DDH} for more than a few seconds.
- Do not input HSYNC and VSYNC signals when the power supply voltage is not applied. (See the input voltage item in *Maximum rating*.)
- Immediately after power-on, please reset immediately because CMOS IC is in an unstable state.
 - 1) Immediately after power-on, input the "Low" level to the S and XRST pins.
 - 2) Immediately after power-on, input clock to the BCLKI pin. It is necessary to input 10 clk or more in order that "Low" level signal reach to the whole internal circuit completely.
 - 3) Immediately after power-on, input clock to the CLK pin.

It is necessary to supply the stable clock before S pin is changed "Low" level to "High" level in order that PLL is oscillated stably.

• There is a reset sequences as described below.

Immediately after power-on, input the "Low" level to the S and XRST pins. After 500ns or more, input the "High" level to S pin. After the S pin is set to "High" level, input the "Low" level to the XRST pin for 300us or more.

Immediately after power-on, input clock to the BCLKI and CLK pins.

14.4 DC Characteristics

14.4.1 DC Characteristics

Measuring condition: V_{DDL} = 1.8 \pm 1.5 V, V_{DDH} = 3.3 \pm 0.3 V, V_{SS} = 0.0 V, Ta = -40 to +85°C

Parameter	Symbol	Condition			Unit	
Farameter	Symbol	Condition	Min.	Тур.	Max.	
Output voltage	V	L = 100uA	V 0.2		V	V
("High" level)	V _{OH}	I _{OH} =-100uA	V _{DDH} -0.2		V _{DDH}	v
Output voltage	V	-100.4	0.0		0.2	V
("Low" level)	V _{OL}	I _{OL} =100uA	0.0		0.2	v
Output current		V _{DDH} =3.3V±0.3V		(*1)		mA
("High" level)		VDDH-3.3V±0.3V		(*1)		ША
Output current		V _{DDH} =3.3V±0.3V		(*1)		mA
("Low" level)		VDDH-3.3V⊥0.3V		(*1)		ША
Input leakage current	IL				±5	μA
Pin capacitance	С				16	pF

*1: Please refer "V-I characteristics diagram".

L Type: Output characteristics of MD0-31 and MDQM0-3 pins

M Type: Output characteristics of pins other than signals indicated by L type and H type

H Type: Output characteristics of XINT, DREQ, XRDY pins

Fig. V-I characteristics L, M type

 $Condition \quad \text{MIN: Process=Slow, Ta=85^{\circ}\text{C}, V_{\text{DD}}\text{=}3.0\text{V}}$

TYP: Process=Typical, Ta=25°C, V_{DD}=3.3V

Fig. V-I characteristics H type

FUJITSU SEMICONDUCTOR CONFIDENTIAL 14.5 AC Characteristics

14.5.1 Host interface

Clock

Parameter	Symbol Condition		Unit			
		Condition	Min.	Тур.	Max.	Onit
BCLKI frequency	f _{BCLKI}				66	MHz
BCLKI H-width	t _{HBCLKI}		1			ns
BCLKI L-width	t _{LBCLKI}		1			ns

Host interface signals based on BCLK

		(Operating	(Operating condition: external					
Parameter	Symbol	Condition		Rating	1	Unit		
	Cymbol	Contaition	Min.	Тур.	Max.	0		
Address set up time	t _{ADS}		3.0			ns		
Address hold time	t _{ADH}		0.0			ns		
XBS Set up time	t _{BSS}		3.0			ns		
XBS Hold time	t _{BSH}		0.0			ns		
XCS Set up time	t _{css}		3.0			ns		
XCS Hold time	t _{CSH}		0.0			ns		
XRD Set up time	t _{RDS}		3.0			ns		
XRD Hold time	t _{RDH}		0.0			ns		
XWE Set up time	t _{WES}		5.0			ns		
XWE Hold time	t _{WEH}		0.0			ns		
Write data set up time	t _{WDS}		3.5			ns		
Write data hold time	t _{WDH}		0.0			ns		
DTACK Set up time	t _{DAKS}		3.0			ns		
DTACK Hold time	t _{DAKH}		0.0			ns		
DRACK Set up time	t _{DRKS}		3.0			ns		
DRACK Hold time	t _{DRKH}		0.0			ns		
Read data delay time (for XRD)	t _{RDDZ}		4.5		10.5	ns		
Read data delay time	t _{RDD}	*2	4.5		9.5	ns		
XRDY Delay time (for XCS)	t _{RDYDZ}		3.5		7.0	ns		
XRDY Delay time	t _{RDYD}		2.5		6.0	ns		
XINT Delay time	t _{INTD}		3.0		7.0	ns		
DREQ Delay time	t _{DQRD}		3.5		7.0	ns		
MODE Hold time	t _{MODH}	*1			20.0	ns		

*1 Hold time required for canceling reset

*2

Valid data is output at assertion of XRDY and is retained until XRD is negated.

Serial Control interface signals

TBD

14.5.2 I²C Interface

I²C bus timing

symbol			MIN	MAX	unit
T _{S2SDAI}	SDA(I) setup time	standard	250		ns
		high-speed	100		ns
T _{H2SDAI}	SCL(I) hold time	standard	0		ns
		high-speed	0		ns
T _{CSCLI}	SCL(I) cycle time	standard	10.0		us
		high-speed	2.5		us
T _{WHSCLI}	SCL(I) H period	standard	4.0		us
		high-speed	0.6		us
T _{WLSCLI}	SCL(I) L period	standard	4.7		us
		high-speed	1.3		us
T _{CSCLO}	SCL(O) cycle time	standard	2*m+2(*2)		PCLK _{*1}
		high-speed	int(1.5*m)+2(*2)		PCLK _{*1}
T _{WHSCLO}	SCL(O) H period	standard	m+2 _(*2)		PCLK _{*1}
		high-speed	int(0.5*m)+2(*2)		PCLK _{*1}
T _{WLSCLO}	SCL(O) L period	standard	m _(*2)		PCLK _{*1}
		high-speed	m _(*2)		PCLK _{*1}
T _{W2SCLI}	SCL(I) setup time	standard	4.0		us
		high-speed	0.6		us
T _{H2SCLI}	SCL(I) hold time	standard	4.7		us
		high-speed	1.3		us
T _{WBFI}	bus free time	standard	4.7		us
		hirh-speed	1.3		us
T _{S2SCLO}	SCL(O) set up time	standard	m+2 _(*2)		PCLK _{*1}
		high-speed	int(0.5*m)+2(*2)		PCLK _{*1}
T _{H2SCLO}	SCL(O) hold time	standard	m-2 _(*2)		PCLK _{*1}
		high-speed	int(0.5*m)-2(*2)		PCLK _{*1}
T _{H2SDAO}	SDA(O) hold time		5		PCLK _{*1}

*1 PCLK is an internal clock of I2C module. (16.6MHz)

*2 Refer to the clock control register (CCR) for the value of m.

14.5.3 Video interface

(1) Clock

Parameter	Symbol	Condition		Unit		
Farameter	Symbol	Condition	Min.	Тур.	Max.	Unit
CLK Frequency	f _{CLK}			14.318		MHz
CLK H-width	t _{HCLK}		25			ns
CLK L-width	t _{LCLK}		25			ns
DCLKI Frequency	f _{DCLKI}				80	MHz
DCLKI H-width	t _{HDCLKI}		5			ns
DCLKI L-width	t _{LDCLKI}		5			ns
DCLKO frequency	f _{DCLKO}				80	MHz

(2) Input signals

Parameter	Symbol	Condition		Unit		
Faranieter	Symbol	Condition	Min.	Тур.	Max.	Onit
HSYNC Input pulse width	t _{WHSYNC0}	*1	3			clock
	t _{WHSYNC1}	*2	3			clock
HSYNC Input setup time	t _{SHSYNC}	*2	6			ns
HSYNC Input hold time	t _{HHSYNC}	*2	1			ns
VSYNC Input pulse width	t _{WHSYNC1}		1			HSYNC 1 cycle

*1 Applied only in PLL synchronization mode (CKS=0), reference clock output from internal PLL (cycle = 1/14*fCLK)

*2 Applied only in DCLKI synchronization mode (CKS=1), reference clock = DCLKI

(3) Output signals (standard)

This definition is applied for followig mode operations

- 1) single display & non-inverting DCLKO
 - (MDen=0) & (DCKinv=0)
- 2) dual display & single-edge & non-inverting DCLKO
 - (MDen=1) & (DCKed=0) & (DCKinv=0)

	•	(Operating	condition:	external	10ad = 20)pF)
Parameter	Symbol	vmbol Condition		Rating		Unit
Farameter	Symbol	Condition	Min.	Тур.	Max.	
RGB Output delay time 1	T _{RGB1}		2		9	ns
DISPE Output delay time 1	t _{DEO1}		2		9	ns
HSYNC Output delay time 1	t _{DHSYNC1}		2		9	ns
VSYNC Output delay time 1	t _{DVSYNC1}		2		9	ns
CSYNC Output delay time 1	t _{DCSYNC1}		2		10	ns
GV Output delay time 1	t _{DGV1}		1.5		9	ns

(Operating condition: external load = 20 pE)

(4) Output signals (inverting)

This definition is applied for followig mode operations

- 1) single display & inverting DCLKO
 - (MDen=0) & (DCKinv=1)
- 2) dual display & single-edge & inverting DCLKO
 - (MDen=1) & (DCKed=0) & (DCKinv=1)

Parameter	Symbol	Condition	Rating			Unit
Farameter	Symbol	Condition	Min.	Тур.	Max.	Onit
RGB Output delay time 2	T _{RGB2}		2		9	ns
DISPE Output delay time 2	t _{DEO2}		2		9	ns
HSYNC Output delay time 2	t _{DHSYNC2}		2		9	ns
VSYNC Output delay time 2	t _{DVSYNC2}		2		9	ns
CSYNC Output delay time 2	t _{DCSYNC2}		2		10	ns
GV Output delay time 2	t _{DGV2}		1.5		9	ns

(Operating condition: external load = 20 pF)

(5) Output signals (bi-edge)

This definition is applied for followig mode operations

dual display & bi-edge

(MDen=1) & (DCKed=1)

		(Operating	condition:	external	load = 20) pF)
Parameter	Symbol	Condition	Rating			Unit
Falameter	Symbol	Cymbol Conation	Min.	Тур.	Max.	Onit
RGB Output delay time 3	T _{RGB3}		1.5		9	ns
DISPE Output delay time 3	t _{DEO3}		1.5		9	ns
HSYNC Output delay time 3	t _{DHSYNC3}		1.5		9	ns
VSYNC Output delay time 3	t _{DVSYNC3}		1.5		9	ns
CSYNC Output delay time 3	t _{DCSYNC3}		1.5		10	ns
GV Output delay time 3	t _{DGV3}		1.5		9	ns
RGB Output delay time 4	T _{RGB4}		1.5		9	ns
DISPE Output delay time 4	t _{DEO4}		1.5		9	ns
HSYNC Output delay time 4	t _{DHSYNC4}		1.5		9	ns
VSYNC Output delay time 4	t _{DVSYNC4}		1.5		9	ns
CSYNC Output delay time 4	t _{DCSYNC4}		1.5		10	ns
GV Output delay time 4	t _{DGV4}		1.5		9	ns

14.5.4 Video capture interface

clock

		Symbol Condition				
parameter	Symbol		Min.	Тур.	Max.	Unit
CCLK (RGBCLK) frequency	f _{CCLK}			27 ^{*1}		MHz
CCLK (RGBCLK) H-width	t _{HCCLKI}		5			ns
CCLK (RGBCLK) L-width	t _{lCCLKI}		5			ns

*1: Max buffer size of horizontal direction is 840.

Input signals

parameter	0 miliot	0				
	Symbol	Condition	Min.	Тур.	Max.	Unit
VI setup time	t _{svi}		6			ns
VI hold time	t _{HVI}		0			ns
HSYNCI setup time	t _{sHSI}		6			ns
HSYNCI hold time	t _{HHSI}		0			ns
VSYNCI setup time	t _{svsi}		6			ns
VSYNCI hold time	t _{HVSI}		0			ns
RI setup time	t _{sRI}		6			ns
RI hold time	t _{HRI}		0			ns
GI setup time	t _{sGI}		6			ns
GI hold time	t _{HGI}		0			ns
BI setup time	t _{sBI}		6			ns
BI hold time	t _{HBI}		0			ns

14.5.5 Graphics memory interface

An assumed external capacitance

Parameter	A	An assumed external capacitance				
	Min	Тур	Мах			
Board pattern	5.0		15.0	pF		
SDRAM (CLK)	2.5		4.0	pF		
SDRAM (D)	4.0		6.5	pF		
SDRAM (A, DQM)	2.5		5.0	pF		

Clock

Parameter	Symbol	Condition		Unit		
	Symbol	Condition	Min.	Тур.	Max.	Onit
MCLKO Frequency	f _{MCLKO}				*1	MHz
MCLKO H-width	t _{HMCLKO}		1.0			ns
MCLKO L-width	t _{lmclko}		1.0			ns
MCLKI Frequency	f _{MCLKI}				*1	MHz
MCLKI H-width	t _{HMCLKI}		1.0			ns
MCLKI L-width	t _{LMCLKI}		1.0			ns

*1 For the bus-asynchronous mode, the frequency is 1/3 of the oscillation frequency of the internal PLL. For the bus-synchronous mode, the frequency is the same as the frequency of BCLKI.

Input signals

Parameter	Symbol	Symbol Condition	Rating			Unit
Faranieter	Symbol		Min.	Тур.	Max.	Onit
MD Input data setup time	t _{MDIDS}	*2	2.0			ns
MD Input data hold time	t _{MDIDH}	*2	0.7			ns

*2 It means against MCLKI.

There are some cases regarding AC specifications of output signals.

The following tables shows typical twelve cases of external SDFAM capacitance.

(1) External SDRAM capacitance case 1

External SDRAM capacitance

SDRAM x1	Total capacitance	Unit
MCLKO	9.8pF (DRAM CLK 2.5pF, Board pattern 5pF)	pF
MA,MRAS,MCAS,MWE	7.5pF (DRAM A.DQM 2.5pF, Board pattern 5pF)	pF
MD,DQM	9.0pF (DRAM D 4pF, Board pattern 5pF)	pF

Output signals

Parameter	Symbol Conditio		Rating *1			
Faranieter	Symbol	Condition	Min.	Тур.	Max.	Unit
MCLKI signal delay time against MCLKO	t _{DID}		0		4.2	ns
MA, MRAS, MCAS, MWE Access time	t _{MAD}		1.0		5.0	ns
MDQM Access time	t _{MDQMD}		1.1		5.4	ns
MD Output access time	t _{MDOD}		1.1		5.4	ns

(2) External SDRAM capacitance case 2

External SDRAM capacitance

SDRAM x1	Total capacitance	Unit
MCLKO	24.8pF (DRAM CLK 4.0pF, Board pattern 15pF)	pF
MA,MRAS,MCAS,MWE	20.0pF (DRAM A.DQM 5pF, Board pattern 15pF)	pF
MD,DQM	21.5pF (DRAM D 6.5pF, Board pattern 15pF)	pF

Output signals

Parameter	Symbol Cond	Condition	Condition			Unit
Falanielei	Symbol	condition	Min.	Тур.	Max.	Onit
MCLKI signal delay time against MCLKO	t _{DID}		0		3.5	ns
MA, MRAS, MCAS, MWE Access time	t _{MAD}		1.0		5.2	ns
MDQM Access time	t _{MDQMD}		1.2		5.5	ns
MD Output access time	t _{MDOD}		1.2		5.5	ns

(3) External SDRAM capacitance case 3

External SDRAM capacitance

SDRAM x2	Total capacitance	Unit
MCLKO	12.3pF (DRAM CLK 2.5pF x2, Board pattern 5pF)	pF
MA,MRAS,MCAS,MWE	10.0pF (DRAM A.DQM 2.5pF x2, Board pattern 5pF)	pF
MD,DQM	9.0pF (DRAM D 4pF, Board pattern 5pF)	рF

Output signals

Parameter	Symbol Conditio	Condition		Unit		
Falameter	Symbol	Condition	Min.	Тур.	Max.	Onit
MCLKI signal delay time against MCLKO	t _{DID}		0		4.1	ns
MA, MRAS, MCAS, MWE Access time	t _{MAD}		1.0		5.0	ns
MDQM Access time	t _{MDQMD}		1.1		5.2	ns
MD Output access time	t _{MDOD}		1.1		5.2	ns

(4) External SDRAM capacitance case 4

External SDRAM capacitance

SDRAM x2	Total capacitance	Unit
MCLKO	28.8pF (DRAM CLK 4.0pF x2, Board pattern 15pF)	pF
MA,MRAS,MCAS,MWE	25.0pF (DRAM A.DQM 5pF x2, Board pattern 15pF)	pF
MD,DQM	21.5pF (DRAM D 6.5pF, Board pattern 15pF)	pF

Output signals

Parameter	Symbol	Condition	Rating *1			Unit
			Min.	Тур.	Max.	Unit
MCLKI signal delay time against MCLKO	t _{DID}		0		3.4	ns
MA, MRAS, MCAS, MWE Access time	t _{MAD}		1.1		5.4	ns
MDQM Access time	t _{MDQMD}		1.1		5.5	ns
MD Output access time	t _{MDOD}		1.1		5.5	ns

14.5.6 PLL specifications

Parameter	Rating	Description		
Input frequency (typ.)	14.31818 MHz			
Output frequency	400.9090 MHz	× 28		
Duty ratio	101.6 to 93.0%	H/L Pulse width ratio of PLL output		
Jitter	60 to -60 ps	Frequency tolerant of two consecutive clock cycles		

CLKSEL1	CLKSEL0	Input frequency	Assured operation range (*1)		
L	L	13.5 MHz	13.365 to 13.5 MHz		
L	Н	14.32 MHz	14.177 to 14.32 MHz		
Н	L	17.73 Hz	17.553 to 17.73 MHz		
Н	Н	33.33 Hz	32.997 to 33.33 MHz		

*1 Assured operation input frequency range: Standard value –1%

FUJITSU SEMICONDUCTOR CONFIDENTIAL 14.6 AC Characteristics Measuring Conditions

 $\begin{array}{l} t_r, \ t_f \leq 5 \ \text{ns} \ \textbf{:All input signals have to change within} \\ V_{IH} = 2.0 \ V, \ \sqrt[9]{ns} \cdot 0.8 V \ \textbf{(3.3-V CMOS interface input)} \end{array}$

FUJITSU SEMICONDUCTOR CONFIDENTIAL 14.7 Timing Diagram

14.7.1 Host interface

Host interface based on BCLKI

(1)Clock

(2)MODE hold time

(3)XINT output delay times

(4)Host bus AC timing (Normally Not Ready)

(6)DMA AC timing

*: The above timing diagram for the D pin is that of when a single DMA is used. When a dual DMA is used, see the host bus-timing diagram.

Serial Control interface

TBD

14.7.2 Video interface

(1) Clock

(2) HSYNC signal setup/hold

(3) Output signal delay (standard)

(4) Output signal delay (inverted)

(5) Output signal delay (bi-edge)

14.7.3 Video capture interface

clock

Video input

14.7.4 Graphics memory interface

Clock

Input signal setup/hold time

MCLKI signal delay

Output signal delay

