

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

October 2006

FDMC6890NZ

Dual N-Channel PowerTrench® MOSFET

20V, 4A, Q1:68m Ω , **Q2:100m** Ω

Features

Q1: N-Channel

- Max $r_{DS(on)}$ = 68m Ω at V_{GS} = 4.5V, I_D = 4A
- Max $r_{DS(on)}$ = 100m Ω at V_{GS} = 2.5V, I_D = 3A

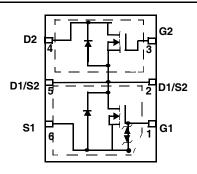
Q2: N-Channel

- Max $r_{DS(on)}$ = 100m Ω at V_{GS} = 4.5V, I_D = 4A
- Max $r_{DS(on)}$ = 150m Ω at V_{GS} = 2.5V, I_D = 2A
- Low gate Charge
- RoHS Compliant

General Description

FDMC6890NZ is a compact single package solution for DC to DC converters with excellent thermal and switching characteristics. Inside the Power 33 package features two N-channel MOSFETs with low on-state resistance and low gate charge to maximize the power conversion and switching efficiency. The Q1 switch also integrates gate protection from unclamped voltage input.

Application


■ DC - DC Conversion

Power 33

S1 D1/S2 D2

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain to Source Voltage		20	20	V
V _{GS}	Gate to Source Voltage		±12	±12	V
	-Continuous		4		
ID.	-Pulsed		1	0	A
P _D	Power Dissipation (Steady State) Q1	(Note 1a)) 1.92		W
	Power Dissipation (Steady State) Q2		1.	VV	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	Q1	(Note 1a)	65	°C/W
Rain	Thermal Resistance, Junction to Ambient	Q2		70	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
6890N	FDMC6890NZ	Power 33	7inch	8mm	3000 units

Electrical Characteristics T₁ = 25°C unless otherwise noted

 $Q_{g(2)}$

 Q_{gs}

 Q_{gd}

Total Gate Charge at 2V

Gate to Source Gate Charge

Gate to Drain "Miller" Charge

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units	
Off Chara	cteristics							
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	Q1 Q2	20 20			V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C	Q1 Q2		13 12		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16V, V _{GS} = 0V	Q1 Q2			1 1	μА	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12V, V_{DS} = 0V$	Q1 Q2			±10 ±100	μA nA	
On Chara	cteristics							
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	Q1 Q2	0.6 0.6	0.9 1.0	2 2	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C	Q1 Q2		-3 -3		mV/°C	
r	Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 4A$ $V_{GS} = 2.5V, I_D = 3A$	Q1		58 77	68 100	mΩ	
r _{DS(on)}		$V_{GS} = 4.5V, I_D = 4A$ $V_{GS} = 2.5V, I_D = 2A$	Q2		67 102	100 150		
9 _{FS}	Forward Transconductance	$V_{DS} = V$, $I_D = 4A$	Q1 Q2		10 7		S	
Dynamic	Characteristics							
C _{iss}	Input Capacitance		Q1 Q2		205 190	270 250	pF	
C _{oss}	Output Capacitance	V _{DS} = 10V, V _{GS} = 0V, f= 1MHZ	Q1 Q2		60 60	80 80	pF	
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		40 35	60 55	pF	
R _g	Gate Resistance	f = 1MHz	Q1 Q2		3.3 2.8		Ω	
Switching	g Characteristics							
t _{d(on)}	Turn-On Delay Time		Q1 Q2		4 4	10 10	ns	
t _r	Rise Time	$V_{DD} = 10V, I_{D} = 4A, R_{GEN} = 6\Omega$	Q1 Q2		13 12	22 21	ns	
t _{d(off)}	Turn-Off Delay Time		Q1 Q2		10 7	19 14	ns	
t _f	Fall Time		Q1 Q2		6 6	12 12	ns	
$Q_{g(TOT)}$	Total Gate Charge at 4.5V	V _{GS} = 0V to 4.5V	Q1 Q2		2.4 1.8	3.4 2.6	nC	
	1		L			1		

Q1

Q2

Q1

Q2

Q1

Q2

 $V_{DD} = 10 \text{ V}$ $I_D = 4A$

1.4

0.6

0.4

0.5

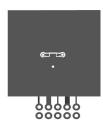
0.9

8.0

1.9

8.0

nC


nC

nC


Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units	
Drain-Source Diode Characteristics								
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = 4A	Q1 Q2		0.94 0.92	1.25 1.25	V	
t _{rr}	Reverse Recovery Time	I _E = 4A, di/dt = 100A/s	Q1 Q2		18 17	27 26	ns	
Q _{rr}	Reverse Recovery Charge	F = 4A, di/dt = 100A/S	Q1 Q2		9 10	14 15	nC	

Notes:
 1: R_{θ,IA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θ,IC} is guaranteed by design while R_{θ,CA} is determined by the user's board design.

a. 65°C/W when mounted on a 1 in² pad of 2 oz copper

b. 150°C/W when mounted on a minimum pad of 2 oz copper

2: Pulse Test: Pulse Width < 300μ s, Duty cycle < 2.0%.

Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted

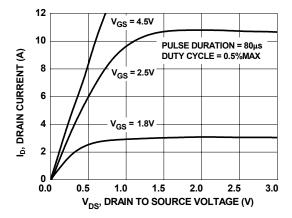


Figure 1. On-Region Characteristics

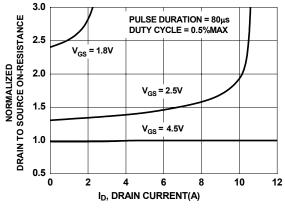


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

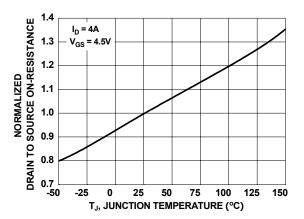


Figure 3. Normalized On - Resistance vs Junction Temperature

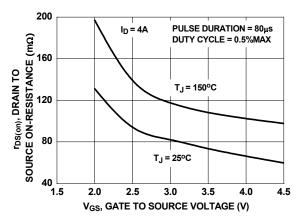


Figure 4. On-Resistance vs Gate to Source Voltage

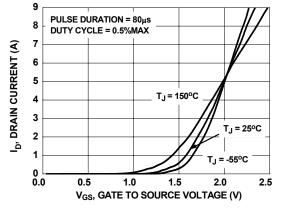


Figure 5. Transfer Characteristics

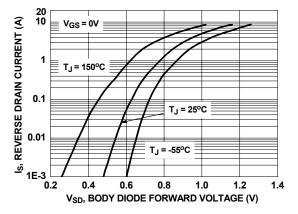


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted

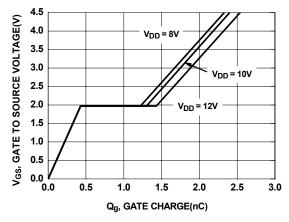


Figure 7. Gate Charge Characteristics

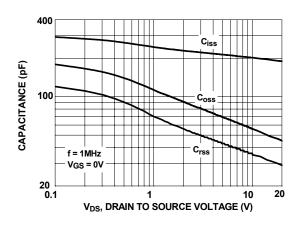


Figure 8. Capacitance vs Drain to Source Voltage

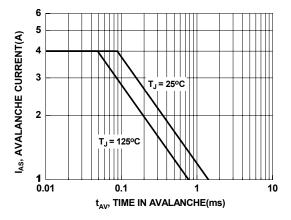


Figure 9. Unclamped Inductive Switching Capability

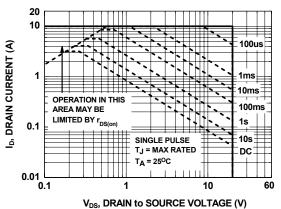


Figure 10. Forward Bias Safe
Operating Area

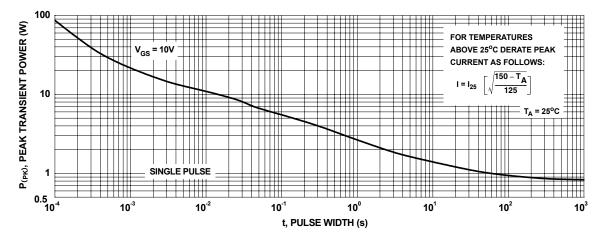


Figure 11. Single Pulse Maximum Power Dissipation

Typical Characteristics (Q1 N-Channel)T_J = 25°C unless otherwise noted

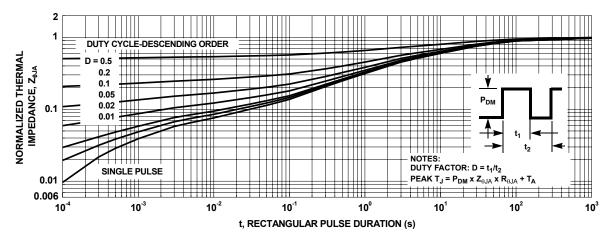


Figure 12. Transient Thermal Response Curve

Typical Characteristics (Q2 N-Channel)

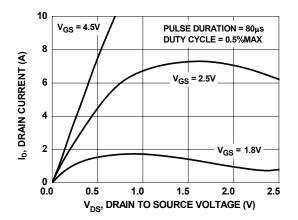


Figure 13. On Region Characteristics

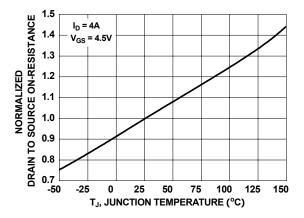


Figure 15. Normalized On Resistance vs Junction Temperature

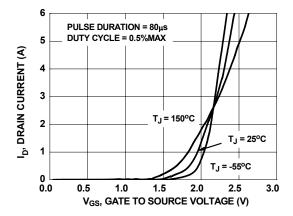


Figure 17. Transfer Characteristics

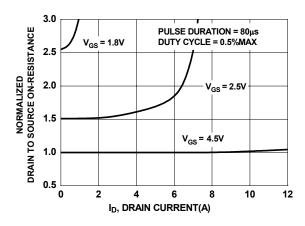


Figure 14. Normalized on-Resistance vS Drain Current and Gate Voltage

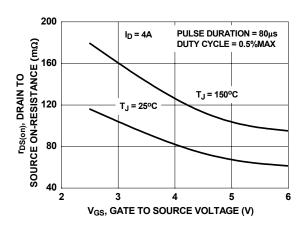


Figure 16. On-Resistance vs Gate to Source Voltage

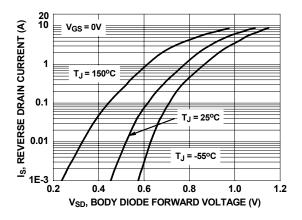



Figure 18. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics

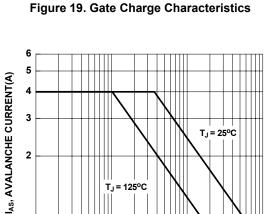


Figure 21. Unclamped Inductive **Switching Capability**

t_{AV}, TIME IN AVALANCHE(ms)

0.1

0.01

1 └─ 1E-3

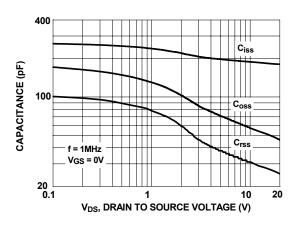


Figure 20. Capacitance vs Drain to Source Voltage

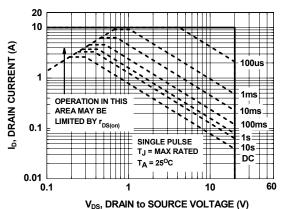


Figure 22. Forward Bias Safe **Operating Area**

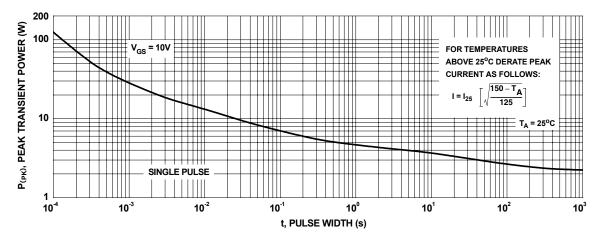


Figure 23. Single Pulse Maximum Power Dissipation

Typical Characteristics

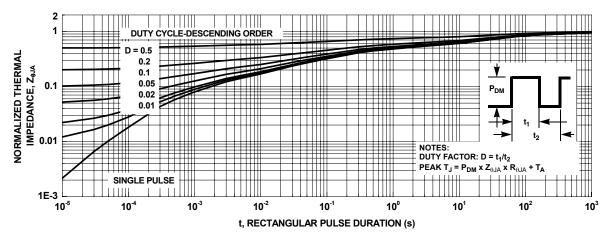
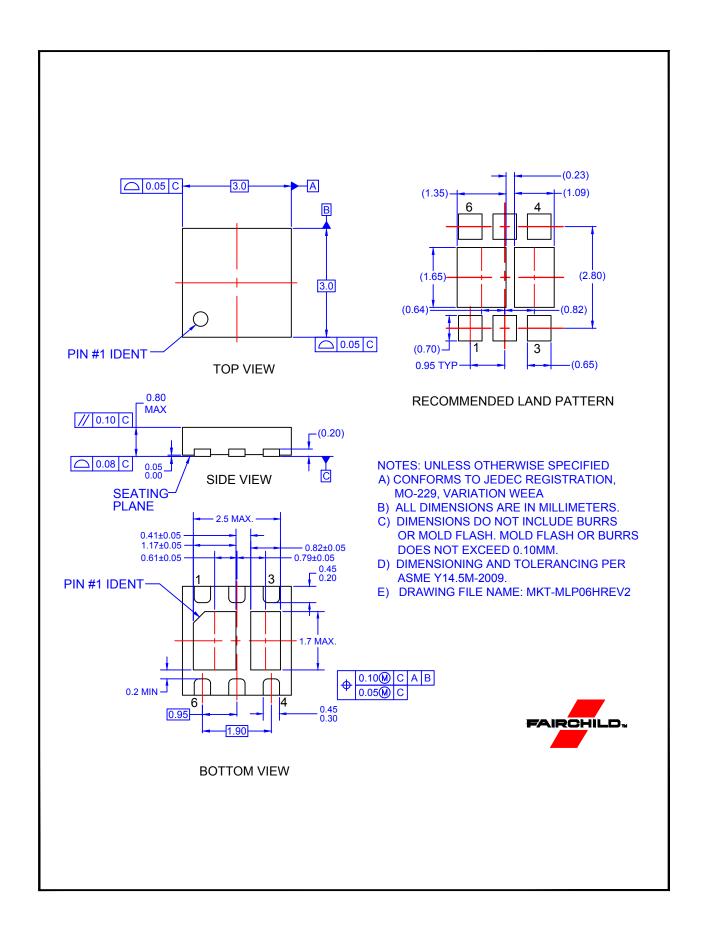



Figure 24. Transient Thermal Response Curve

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative