

 AN11703
LPC5410x Sensor Processing-Motion Solution
Rev. 1.0 — 29 June 2015 Application note

Document information
Info Content
Keywords LPC54100, LPC54102, Sensor Processing-Motion Solution, SPM-S,

sensor hub, sensor fusion, Bosch, BSX, BSXlite, BSX Lite

Abstract This application note describes the NXP LPC54102 Sensor
Processing/Motion Solutions (SPM-S). Details on the microcontroller, its
typical applications, the SPM-S sensor hub software and strategies
regarding power optimization are given.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 20154. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 2 of 45

Contact information
For more information, please visit: http://www.nxp.com

Revision history
Rev Date Description
1.0 20150629 Initial revision

http://www.nxp.com/

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 3 of 45

1. Introduction
The LPC54100 series are high performance, yet low-power dual-core ARM Cortex-
M4/M0+ microcontrollers, operating at frequencies up to 100 MHz. The LPC5410x
includes up to 512 kB of flash memory and up to 104 kB of SRAM. The peripheral
complement includes two SPI interfaces, four USARTs, three Fast-mode Plus I2C Bus
interfaces (also supporting High Speed mode as a slave), a 32-bit, general purpose State
Configurable Timer/PWM (SCT/PWM) and an assortment of other timers, including a
Real-Time Clock module with a dedicated oscillator, a 12-channel/12-bit, 5 MSPS ADC.
A DMA controller can service most of the peripherals.

Typical applications for the LPC54100 series include always-on sensor processing, as
demonstrated in the NXP LPC54102 Sensor Processing-Motion Solution (SPM-S). The
NXP LPC54102 SPM-S (OM13078) is a ‘sensor hub solution’, consisting of an
LPC54102 LPCXpresso board and a sensor-shield board. The sensor shield contains
multiple sensors, for example, various motion sensors (accelerometer, gyroscope,
magnetometer) and other sensors such as temperature, pressure, ambient light, and
proximity. The LPC54102 samples these sensors, processes the data (9 Degrees of
Freedom sensor fusion using the Bosch BSXlite library) and sends the result over an I2C
host interface. The data can be visualized using an example interactive Windows
application, which communicates to the sensor hub using the on-board I2C-to-USB
bridge.

This application note describes the following topics in more detail:
 Background on sensor hubs and sensor fusion.
 SPM-S system overview.

 SPM-S software overview.
 SPM-S sensor data acquisition.
 Bosch BSXlite sensor fusion.
 SPM-S host interface.

1.1 Sensor hubs and sensor fusion: Overview
Section 1.1.1 and section 1.1.2 give a general overview on sensor hubs and sensor
fusion.

1.1.1 Sensor hubs
Sensor hub is one of the major applications of the LPC54100 series microcontrollers.
Sensor hubs are found in mobile devices, such as smartphones, tablets, and wearables.
Always-on sensors at low power consumption are made possible by sensor hubs. Before
the introduction of sensor hubs, the sensors were handled by the device’s application
processor (AP), causing significant battery drain when these sensors would be on
continuously. Sensor hubs solve this problem by performing sensor data aggregation,
sensor data batching (‘buffering’) and sensor fusion in a low-power fashion, reducing the
need for the AP to be active while the sensors are active. Fig 1 shows a typical block
diagram for a sensor-hub solution.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 4 of 45

Fig 1. Block diagram of an LPC54100-based sensor hub

1.1.2 Sensor Fusion
Besides sensor sampling and sensor data batching, another major task for the sensor
hub is sensor data processing, known as ‘sensor fusion’. Sensor fusion, consists of
algorithms that combine the data of several sensors to get more accurate and complete
sensor data. It aims to compensate shortcomings of each sensor and provides highly
accurate, reliable, and stable data. Typically, sensor fusion is performed on motion
sensors, such as an accelerometer, gyroscope and magnetometer, though it is also
possible to perform sensor fusion with other types of sensors as input. In this document,
sensor fusion refers to the 9-axis (or 9DOF, 9 Degrees of Freedom) motion sensor
fusion, which fuses the data from the three above mentioned motion sensors.

Besides providing more accurate sensor data, sensor fusion can also derive easy-to-
interpret data, such as the orientation of the device (for example, roll, pitch and yaw).

It is important to understand that sensor fusion algorithms rely on advanced arithmetic,
which sets an important requirement for the microcontroller; it must have enough
processing power to execute the sensor fusion algorithm and finish it before the next
iteration is executed.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 5 of 45

Fig 2. Sensor fusion applied to motion sensors

1.2 Sensor Processing-Motion Solution
The NXP LPC54102-based Application-in-a-box Sensor Processing-Motion Solution
(OM13078) enables a new generation of always-on, context-aware products. The system
listens to, monitors, and aggregates data from several sensors and processes this data
using complex sensor-fusion software, included in the solution.

NXP has partnered with Bosch Sensortec to offer an integrated solution that makes it
easy to incorporate motion or inertia and other sensor data into a variety of end
applications. The solution includes commercial and development licenses for Bosch
Sensor Fusion (BSXlite). The software combines motion-sensor data to get accurate
sensor signals or derived sensory information with minimal memory requirements. It
provides this motion-sensor data in the form of 9-axis motion vectors, represented as
quaternions or heading, pitch and roll values.

The solution consists of an LPCXpresso54102 board and a sensor-shield board. The
sensor shield contains multiple sensors, for example, various motion sensors
(accelerometer, gyroscope and magnetometer) and other sensors such as temperature,
pressure, ambient light, and proximity. The LPC54102 samples these sensors,
processes the data, and sends the result over an I2C host interface. The data is
visualized using an interactive Windows application, which communicates to the sensor
hub using the on-board I2C-to-USB bridge.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 6 of 45

Fig 4. Sample application showing a teapot, the orientation of the teapot is based on
the orientation of the board

See the Sensor Processing/Motion Solution page on NXP.com for the SPM-S source
code, board schematic, PC application and Quick Start Guide.

Fig 3. Sensor Processing-Motion boards (LPCXpresso54102 board with sensor shield)
(OM13078)

http://www.nxp.com/techzones/microcontrollers-resources/solutions/sensor-processing/sensor-processing-motion.html

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 7 of 45

1.3 Typical applications
Although this application note focuses on the smartphone or tablet sensor hub use-case,
there are many applications which can make use of a high-performance, low-power
microcontroller, possibly combined with sensor fusion software:
 Mobile handsets and tablets.
 Portable health and fitness monitoring devices.
 Gaming devices such as 3D mice and sensor gloves.
 Head-worn glasses or terminals.
 Home and building automation products.
 Fleet management and asset tracking.

 Robotics.
 Flying drones.
 Quadcopters.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 8 of 45

2. SPM-S system overview
This chapter gives a more detailed overview of the Sensor Processing/Motion Solution
from a system perspective. It contains the following sections:
 Sensor hub architecture.
 SPM-S Architecture.

2.1 Sensor hub architecture
Fig 5 shows the block diagram of a typical sensor-hub based device.

The main components are:
 The sensor hub.
 The Application Processor (AP).
 The Host Interface (Host I/F).
 The sensors.

Fig 5. Architecture of a typical sensor-hub based device

2.1.1 Application Processor
In a typical smartphone or tablet device, the application processor can be considered as
one of the main components. Among its tasks are controlling the display, controlling the
radios, and running the operating system of the phone. In modern devices this is often a
multi-core ARM Cortex-A SoC, running at high frequencies (>1 GHz). Application
processors have a sleep mode, which is entered as often as possible to save power.

A sensor hub is added to off-load the so-called ‘always-on’ tasks from the AP, such as
sensor interfacing, to lower the power consumption of the device. The AP determines

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 9 of 45

which sensors should be enabled and at which update rate, and informs the sensor hub
about this. When the sensor hub has gathered the sensor data, it wakes up the AP and
transfers the data.

2.1.2 Sensor hub
The sensor hub performs tasks which require less processing power that should be
running while the device is in a low-power mode (AP in sleep mode). Commands are
received from the AP, telling the sensor hub which sensors should be enabled and under
which circumstances the sensor hub can wake up the AP. The sensor hub samples the
sensors and stores the sensor data, wakes up the AP when the wake-up condition is
met, and transfers the data to the AP.

2.1.3 Host interface
The host interface is the communication between the host (the AP) and the sensor hub.
Most often, the host interface is an I2C or SPI bus. The host sends commands to the
sensor hub, and the sensor hub can transfer responses and sensor data to the host.

Since the sensor hub is a slave controlled by the host, an IRQ signal is added so that the
sensor hub can notify the host that it wants to send a response or sensor data.

2.1.4 Sensors
The sensors deliver the raw data for the sensor hub. Typically these sensors are
connected to the sensor hub using an I2C bus, though they can also be interfaced
through SPI, or even using an ADC when dealing with analog sensors.

2.2 SPM-S Architecture
The SPM-S architecture can be divided into hardware architecture and a software
architecture. Section 2.2.1 and section 2.2.2 describes the architecture and the important
difference between the ‘virtual sensors’ and ‘physical sensors’.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 10 of 45

2.2.1 Hardware Architecture
The SPM-S consists of two boards; the LPCXpresso54102 board which includes the
LPC54102 and an on-board debugger, and the Sensor Shield Board, which includes the
motion and environmental sensors. See Fig 6.

Note that some of the motion sensors on the board are (partially) redundant as one of
their functions is also implemented by another sensor. As an example, for the
accelerometer, both the BMC150 and the BMI055 can be used. This overlapping sensor
functionality is provided to enable different performance to be achieved at the system
level; for example, a high end mobile phone would use a BMI055 inertial sensor (with
accelerometer) and a separate magnetometer (BMM150), whereas, a low end phone
may only use an electronic compass (BMC150) and emulate a gyro. The shaded areas in
Fig 6 indicate this sensor is not being used by the demo. Also, the IR remote control and
the Bluetooth Low Energy module are not used in the SPM-S demo.

All sensors are connected to the LPC54102 using a single I2C bus. Table 1 shows the
sensors that are used by the demo, the I2C address at which they are accessible and the
software driver that implements it. (See section 3.3 for Source code and directory
structure).

Fig 6. SPM-S hardware block diagram. Shaded components not used by the demo

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 11 of 45

Table 1. Sensors used by the SPM-S demo

Sensor Function 7-bit I2C address Driver
BMC150 3-axis accelerometer 0x10 (b0010000) bma2x2.c

3-axis magnetometer 0x12 (b0010010) bmm050.c

BMI055 3-axis gyroscope1 0x69 (b1101001) bmg160.c

BMP280 Pressure 0x76 (b1110110) bmp280.c

Temperature 0x76 (b1110110) bmp280.c

MAX44000 Proximity 0x4A (b1001010) max44000.c

Light 0x4A (b1001010) max44000.c

The host interface is implemented using a second I2C bus, which is connected to the on-
board debugger. This on-board debug probe also implements an I2C-to-USB bridge,
allowing the sensor-hub’s I2C host interface to be easily connected to a PC.

2.2.2 Software Architecture
NXP has developed a generic ‘LPC Sensor Framework’, which forms the main part of the
SPM-S. See Fig 7. The framework relies on the Bosch sensor driver to interface with the
sensors and the LPCOpen Driver libraries to communicate with all the on-chip
peripherals.

1. 1 BMI055 is a 6-axis inertial sensor, consisting of an accelerometer and a gyroscope. In the demo
software we only use its gyroscope function and use the BMC150 for the accelerometer data.

Fig 7. SPM-S software block diagram

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 12 of 45

The LPC Sensor Framework encapsulates:
 A generic sensor driver module, to abstract all the different sensor drivers and create

a uniform sensor API.
 A host interface module, which allows to receive commands, buffer data and

responses, and transmit the buffered responses or data over the physical host
interface.

 A timer module to allow periodic polling of sensors and sensor time-stamping.
 A power manager to dynamically adjust the CPU clock speed, enter low-power

modes and enable/disable peripherals.
 An abstraction layer to adopt the LPC Sensor Framework to the Bosch BSXlite

library.
 The Bosch BSXlite library (in object format).
 (optionally) freeRTOS to take care of executing multiple tasks in parallel.

2.2.3 Virtual Sensors and Physical Sensors
It is important to note that the SPM-S makes a distinction between virtual sensors and
physical sensors.

Physical sensors are the physical devices connected as input to the sensor hub. For
example, an accelerometer, gyroscope, or proximity sensor.

Virtual sensors are the sensors and their data as perceived by the host. For example, an
‘orientation sensor’, a calibrated accelerometer, or a calibrated gyroscope. Virtual
sensors can consist of multiple physical sensors, where sensor fusion is used to obtain
the sensor data, but they can also consist of a single sensor where the virtual sensor
data is the raw data from the physical sensor.
The SPM-S must be able to map the virtual sensors to one or more physical sensors
because the host tells the sensor hub to enable a certain virtual sensor and then expects
to receive the data of that virtual sensor.

See section 4.3. Tying-in the sensor for a description of the process.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 13 of 45

3. SPM-S Software Overview
This chapter describes the embedded software for the SPM-S. It contains the following
sections:
 Software flow.
 Software stack.
 Source code and directory structure.

3.1 Software flow
Fig 8 shows a simplified software flow chart of the SPM-S firmware.

Fig 8. Simplified software flow diagram of the SPM-S firmware

The software flow is as follows:
 To achieve the lowest power consumption, the LPC54102 remains in low-power

mode when it is idle.
 The LPC54102 can be woken up by either the host interface (reception of

command), or by a trigger indicating that one or more sensors must be sampled.
 If woken up by the host interface, the LPC54102 receives the command and its

parameters (section 6.3.1. Commands) and the software executes the command
accordingly (For example, enable/disable specific sensors, change the sample rate).
When done, it goes back into low-power mode again.

 If woken up by a sensor trigger, the software acquires and stores the sample first.
Depending on the sensor type (For example, accelerometer, gyroscope, or
temperature.), the software waits for more sensor data, performs the sensor fusion,

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 14 of 45

or queues the data to be sent over the host interface. When done, the LPC54102
goes back into low-power mode again.

3.2 Software stack
Fig 9 shows a more complete software stack.

Fig 9. SPM-S software stack

The following functional blocks are shown in Fig 9:

 Host & Host interface (in blue)
The host can send commands to the sensor hub through its I2C interface. The
LPCOpen I2C slave driver is used to receive the commands and to pass them on
to the command handler. Responses and sensor data to be sent to the host are
queued in a ring buffer using the Tx Ringbuffer Management. The queued data is
transferred over I2C using the LPCOpen I2C slave driver.
The workings of the host interface is described in details in section 6. SPM-S
Host Interface.

 The sensors and sensor drivers (in dark green)
Sensors can either be polled or are interrupt driven. In case of an interrupt driven
sensor, the sensor asserts its IRQ signal when a new sample is available and
the LPC54102 executes the corresponding PININT interrupt handler. This
interrupt handler only saves the time-stamp and increase a data pending
counter.
Main() periodically executes Sensor_Process() (located in the generic sensor
driver) to check for new samples (data pending counter for IRQ-based sensors,
current time for polled sensors) and reads the samples if available. Samples are
read using their respective sensor drivers. Samples are then passed on to the

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 15 of 45

algorithm adapter to further process the sample, and/or to queue them in the
host interface handler’s Tx ring buffer.

 Section 4 SPM-S Sensor Data Acquisition describes the sampling of sensors
and processing of the samples.

 The kernel timer and power management (in light green)
The kernel timer provides functions to easily get the current time (for example,
used for timestamping), while the power management module provides functions
to easily switch between power-down mode, low-power low-performance mode
(CPU @12MHz) and high-performance mode (CPU @84MHz).

 Bosch BSXlite & BSXlite adapter (in red)
The BSXlite library performs the actual sensor fusion, while the algorithm
adapter is an abstraction layer to connect the BSXlite to the LPC Sensorhub
Framework.

 LPCOpen and ROM peripheral driver (in orange)
The LPCOpen driver library and the ROM power library provide access to the
LPC54102’s peripherals and ROM drivers.

3.3 Source code and directory structure
The SPM-S source code is released in LPCOpen V2 format for LPCXpresso, Keil, and
IAR. Fig 10 shows a high-level structure of the source code for LPCXpresso.

Fig 10. Source code directory structure

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 16 of 45

4. SPM-S Sensor Data Acquisition
One of the main tasks for the LPC Sensor Framework is sampling the sensors. A generic
sensor software-interface has been designed to be able to support different kinds of
sensors while maintaining the same API. This chapter explains how sensor sampling is
handled, what the generic interface looks like and how it is (logically) connected to the
virtual sensors that can be enabled by the host.

4.1 Basics
As briefly explained in section 3.2. Software stack, the SPM-S supports two kinds of
sensors:

1. Sensors that can autonomously sample at a certain sample rate and generate
interrupts when a new sample is available.

2. Sensors that must be instructed to take a sample.

With each sample, the timestamp of the sample is also taken, so that the sensor fusion
and the host know when the sample was taken, which may be required for certain
algorithms.

Interrupt driven sensors have their own IRQ handler that gets executed upon assertion of
the IRQ signal using the LPC54102 PININT peripheral. This IRQ handler only stores a
timestamp and increases a global ‘irq pending’ variable; the actual sample of the sensor
is not being read in the IRQ handler.

The actual reading of the sample is performed from main(); upon wake-up (and after
servicing the wake-up source, for example, the sensor IRQ handler), main() will call
function Sensor_process(). For interrupt driven sensors, Sensor_process() will read the
sensor when its ‘irq pending’ counter indicates that at least one new sample is available.
For polled sensors, the delta between the current timestamp and the last sample
timestamp of that sensor is compared against the sample interval of that sensor. If this
interval has been exceeded, the sensor will be sampled.

After reading a sample from a sensor, Sensor_process() calls Algorithm_Process()
function for that sensor, which processes the raw sample and stores the processed data
in the host interface Tx queue.

Fig 11 shows a simplified schematic representation of the sensor sampling process flow.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 17 of 45

Fig 11. Simplified flow chart of the sensor sampling process

4.2 Generic sensor driver interface
The generic sensor driver interface defines a basic API that allows easy addition of
different kinds of physical sensors and an easy way to map those to virtual sensors. This
is accomplished by providing a structure with the sensor driver, which contains:
 Unique ID of the physical sensor.
 A table pointing to four functions, to initialize the sensor, read a sample from the

sensor, to enable/disable the sensor, and to configure the sample rate of the sensor.
 64 bits to store sample data.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 18 of 45

 Timestamp of last sample and when the next sample should be taken.
 Flag to indicate the sensor is enabled or disabled.
 The ‘irq pending’ counter.
 The sensor’s mode (IRQ driven of polled).
 The sensor’s configured sample rate.

Fig 12. The physical sensor structure and function-pointer table for the Bosch
accelerometer. Driver is applicable to both BMC150 and BMI055, BMC150 is
selected by I2C slave address by demo software

4.3 Tying-in the sensor driver
The generic sensor driver interface helps to keep the sensor management simple,
flexible, and easy to expand but does not do anything by itself. Each sensor must be
connected to the rest of the framework so that:
 It has a unique physical sensor ID to be able to identify the sensor.
 The sensor is included in the list of physical sensors, so that the sensor is sampled

on the specified interval.
 It belongs to a virtual sensor (enabling of virtual sensor should eventually result in the

enabling of one or more physical sensors).
 The sensor data is either further processed and/or stored in the host I/F Tx queue.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 19 of 45

4.3.1 Unique physical sensor ID
Each physical sensor can be identified by its unique sensor ID. These IDs are defined
using the PhysSensorId_t enumerator (sensors.h). See Fig 13.

Fig 13. Unique sensor ID of each physical sensor

4.3.2 g_phySensors array
The g_phySensors array (sensors.c) holds pointers to all physical-sensor data/control
structures (PhysicalSensor_t structures as shown in Fig 12). This array is traversed when
a sensor is enabled with a specific ID, or by the Sensor_process() function to check
whether a new sample is available.

Note: Each entry in the displayed table is a pointer to a PhysicalSensor_t structure like the one
shown in Fig 12 using #define macros

Fig 14. Array g_phySensors

4.3.3 SensorMap array
The SensorMap array (bosch_algo.c) maps virtual sensors to one or more physical
sensors. Each virtual sensor has a single entry in this array, specifying which physical
sensors are being used by that virtual sensor.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 20 of 45

The SensorMap array is used to enable/disable the right physical sensors when the host
enables/disables a certain virtual sensor. In Fig 15, the virtual ‘orientation sensor’ uses
the accelerometer, magnetometer, and gyroscope as an example.

Fig 15. The SensorMap array defines which physical sensors are being used by a
specific virtual sensor

4.3.4 Algorithm_Process() function
The function Algorithm_Process() takes care of processing the raw sensor data and
queueing it in the host I/F Tx buffer. Therefore, each physical sensor must have an entry
in the function’s switch/case statement. For some sensors, such as a temperature sensor
or a proximity sensor, this can be easy and only requires pushing the data to the queue.
For other sensors, such as the motion sensors, it is more complicated because the data
must be processed first.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 21 of 45

Fig 16. Code snippet of the Algorithm_Process() function

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 22 of 45

5. Bosch BSXlite Sensor Fusion

5.1 BSXlite overview
BSXlite is motion sensor-fusion library, provided under a limited-use Software License
Agreement, which can be used for free on NXP LPC microcontrollers to process data
from Bosch Sensortec sensors. BSXlite allows high-efficiency, high-performance 9-axis
sensor fusion.

5.2 BSXlite vs. BSX
BSXlite is a feature reduced and less optimized version of the Bosch BSX library. To
license the full BSX library, contact Bosch Sensortec directly. The differences between
BSX and BSXlite are explained in Table 2 and Table 3.

Table 2. Overview of differences between BSX and BSXlite
 BSXlite BSX (full library)
Release format Closed source code /

compiled library Closed source code /
compiled library

License Click-through on
LPCWare.com

Contact Bosch Sensortec

Support / Maintenance Limited (via LPCWare.com
forums)

Full

Key Features BSXlite BSX (full library)
Axis remapping (must be implemented

outside library)

Offset correction
Soft Iron Correction (can be implemented

outside library)

Accelerometer calibration
Magnetometer calibration Classic: based on figure-of-

eight motion
Classic and advanced (fast
calibration)

Magnetic distortion check Basic Advanced
Gyroscope calibration
9-axis orientation processing Basic Advanced
Compass orientation
processing

Basic (tilt compensation) Advanced (adaptive filtering,
tilt compensation)

Data fusion mode 9-axis 9-axis & 6-axis (IMU, M4G,
eCompass)

System Requirements BSXlite BSX (full library)
ROM 52k 67k
RAM 2k 7k

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 23 of 45

Table 3. Differences between BSX and BSXlite with regard to library output
Outputs BSXlite BSX (full library)
Acceleration Raw
Magnetometer Raw, corrected
Gyroscope Raw, corrected
Virtual gyroscope (M4G)
Quaternions
Orientation (unfiltered)
Rotation matrix
Heading accuracy
Linear acceleration
Gravity
Gestures
Step counter and step
detector

Significant motion
Output data rates (ODR) BSXlite BSX (full library)
Accelerometer 100 Hz Multiple data rates
Magnetometer 25 Hz Multiple data rates
Gyroscope 100Hz Multiple data rates
Orientation sensor 50 Hz Multiple data rates

5.3 Using BSXlite
The following section explains which functions are available when using BSXlite and how
BSXlite should be used. More detailed information is available in the various Bosch
BSXlite documents available on LPCWare.com.

5.3.1 BSXlite initialization
At startup, the library first must be initialized. The first step in this process is to call
function bsx_init(). The function takes one parameter, which is a configuration structure.
The inputs for this configuration structure are:

 BSX_U8 *accelspec. Contains acceleration sensor related settings for the BSX
library. Specs for several Bosch accelerometers (BMA255, BMI160, BMA250, and
BMA280) are included in the SPM-S software.

 BSX_U8 *magspec. Contains magnetometer sensor related settings for the BSX
library. Specs for several Bosch magnetometers (BMM150, BMM050) are included in
the SPM-S software.

 BSX_U8 *gyrospec. Contains gyroscope related settings for the BSX library. A spec
for the Bosch BMG160 gyroscope is included in the SPM-S software.

http://www.lpcware.com/

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 24 of 45

 BSX_U8 *usecase. Contains additional required configuration of various internal
modules of the library. A valid configuration for BSXlite has been included in the
SPM-S software.

See the BSXlite documentation for more information on initialization and the
accel/mag/gyro spec and usecase arrays.

The next step is to configure the BSX working mode. For BSXlite, the working mode can
either be BSX_WORKINGMODE_SLEEP (when no sensor fusion is performed) or
BSX_WORKINGMODE_NDOF when performing 9-axis sensor fusion. The working
mode can be configured by calling function bsx_set_workingmode().

Fig 17. Code snippet of BSXlite initialization

During initialization the working mode is set to BSX_WORKINGMODE_SLEEP.
Whenever the host enables any of the BSXlite virtual sensors (orientation or rotation
vector), the mode is changed to BSX_WORKINGMODE_NDOF.

5.3.2 Executing the sensor fusion
The BSXlite library can be instructed to run the sensor fusion algorithm by calling
bsx_dostep(). bsx_dostep() takes a single parameter, a pointer to a libraryinput_t
structure. libraryinput_t holds the data and timestamps for the accelerometer,

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 25 of 45

magnetometer, and gyroscope. The sensor data should be in 32-bit signed format and
the 64-bit timestamp in microseconds. The function returns a 0 when done with no errors.

5.3.3 Get outputs from the library
Data from the enabled virtual sensors can be read from the BSXlite library after
bsx_dostep() has returned successfully using the functions mentioned in Table 4.

Table 4. BSXlite output ‘get’ functions
Virtual sensor Function Output unit
Accelerometer bsx_get_accrawdata() m/s2

Magnetometer bsx_get_magrawdata() µT

bsx_get_magcordata() µT

Gyroscope bsx_get_gyrorawdata_rps() °/s

bsx_get_gyrocordata_rps() °/s

Rotation vector bsx_get_orientdata_quat() Quaternion, W, X, Y and Z as
32-bit Q24 fixed point integers

bsx_get_orientdata_euler_rad() Radians

Geomagnetic
rotation vector

bsx_get_georotationvector_quat() Quaternion, W, X, Y and Z as
32-bit Q24 fixed point integers

bsx_get_geoheadingaccuracy_rad() Radians

5.3.4 Calibration profiles
BSXlite allows saving the current magnetometer calibration data, which can be used to
obtain a quicker geomagnetic fix when re-enabling the magnetometer.

To use this feature, follow below steps when changing the BSX workingmode:
 Call function bsx_get_magcalibaccuracy() to get the current magnetometer accuracy.

When it’s equal to BSX_SENSOR_STATUS_ACCURACY_HIGH, save the current
profile to the LPC54102 SRAM using bsx_get_magcalibprofile()

 Change the working mode using bsx_set_workingmode()
 If the saved profile indicates a high accuracy, restore the calibration profile using

bsx_set_magcalibprofile()

Fig 18 lists the code that shows the algorithm.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 26 of 45

Fig 18. Code listing for (re)storing the magnetometer calibration profile

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 27 of 45

6. SPM-S Host Interface

6.1 Basics
‘Host interface’ is the generic term for the interface between the host and the sensor hub.
It allows the host to send commands to the sensor hub, and the sensor hub to send
sensor data to the host.

6.2 Physical layer
In case of the SPM-S, the physical layer of the host interface is I2C. The host is the I2C
master and the sensor hub is configured as the slave device. Since all communication on
an I2C bus must be initiated by the master, an interrupt signal is added to the I2C bus,
allowing the sensor hub to signal to the host that new data is available and to request the
host to initiate a transfer of this data.

The 7-bit I2C slave address of the sensor hub is 0x18 (0b0011000). Please refer to
UM10204 ‘I2C-bus specification and user manual’ for more information on I2C.

Fig 19 shows the host interface from a hardware perspective.

Fig 19. Block diagram of the host interface hardware

6.3 Protocol
The software protocol for the host interface has been designed in such a way that:
 The host can send commands to the sensor hub at any time by issuing a write on the

I2C bus, as long as the previous command or data-read has finished before initiating
a new command. Depending on which command has been issued by the host, the
host may send additional parameters and may issue a read on the I2C bus to read
the sensor hub’s response.

 The host reads the data from the sensor hub after the sensor hub has asserted its
IRQ signal. The read is performed in two steps. First, the host sends a ‘read data
length’ command. After writing this command, the host issues a read on the I2C bus
to get the number of bytes the sensor hub wants to transmit. Next, the host issues a
‘get data’ command, followed by a read of the exact number of bytes reported
previously by the sensor hub to get the data from the sensor hub.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 28 of 45

Fig 20 and Fig 21 show the signal timing diagrams for these two use-cases.

Fig 20. Simplified signal timing diagram of host sending command and receiving
response

Fig 21. Simplified signal timing diagram of sensor hub sending sensor data

6.3.1 Commands, parameters, and responses
Commands are used to communicate from the host to the sensor, for example, to
enable/disable sensor and to initiate a read of the sensor data. The command itself is an
8-bit opcode and can have up to 3 8-bit parameters. Some commands cause the sensor
hub to send a response back to the host. A graphical representation of the commands
and responses from the host to the sensor are shown in Fig 20 and Fig 21.

 The following are the details of the commands that are implemented.
Command: WHO_AM_I

Description: Sensor hub returns constant value (0x54) to be able to identify the sensor hub
 CMD: 0x00
 Parameters: 0 parameters
 Response: 1 byte:

1st byte: Constant value of 0x54

Command: GET_VERSION
 Description: Get sensor hub firmware version

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 29 of 45

 CMD: 0x01
 Parameters: 0 parameters
 Response: 2 bytes:
 1st byte: Major version of sensor hub firmware
 2nd byte: Minor version of sensor hub firmware

Command: RESET
 Description: Disables all sensors
 CMD: 0x02
 Parameters: 0 parameters
 Response: No response

Command: GET_DATA_LENGTH

Description: Send by host when sensor hub asserts its IRQ to get number of data bytes that the
sensor hub wants to send to the host

 CMD: 0x03
 Parameters: 0 parameters
 Response: 2 bytes:

1st byte: Low byte of 16-bit data length (number of data bytes sensor hub
wants to transmit)

2nd byte: High byte of 16-bit data length (number of data bytes sensor hub
wants to transmit)

Command: GET_DATA

Description: Get data from sensor hub. Number of data bytes corresponds to the number
reported in response to command ‘GET_DATA_LENGTH’

 CMD: 0x04
 Parameters: 0 parameters
 Response: N bytes as reported before in response to command ‘GET_DATA_LENGTH’

Refer to section ‘6.3.2. Sensor data’ for more info on how sensor data is
structured.

Command: SENSOR_ENABLE
 Description: Enable/disable specified sensor
 CMD: 0x20
 Parameters: 2 bytes:
 1st byte: Virtual sensor ID of the sensor to enable/disable
 2nd byte: 0x00 to disable the specified sensor, != 0x00 to enable
 Response: No response

Command: GET_SENSOR_STATE
 Description: Get enabled state (enabled/disabled) of specified sensor
 CMD: 0x21

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 30 of 45

 Parameters: 1 byte:
 1st byte: Virtual sensor ID of the sensor to get the enabled state of
 Response: 1 byte:
 1st byte: 0x00 if specified sensor is disabled, 0x01 if enabled

Command: SET_DELAY
 Description: Configure sample interval (‘delay’) for the specified sensor
 CMD: 0x22
 Parameters: 3 bytes:
 1st byte: Physical sensor ID of the sensor to configure the delay of
 2nd byte: Low byte of 16-bit delay (in milliseconds)
 3rd byte: High byte of 16-bit delay (in milliseconds)
 Response: No response

Command: GET_DELAY
 Description: Get sample interval (‘delay’) for the specified sensor
 CMD: 0x23
 Parameters: 1 byte:
 1st byte: Physical sensor ID of the sensor to get the delay of
 Response: 2 bytes:

1st byte: Low byte of 16-bit delay (in milliseconds)
 2nd byte: High byte of 16-bit delay (in milliseconds)

6.3.2 Sensor data
New sensor samples are stored in the host interface transmit buffer until the host is ready
to initiate the transfer, see section 4. SPM-S Sensor Data Acquisition. As a result, after
the host issues a read, the transferred data is likely to contain multiple samples.

To be able to identify each sample, the actual sensor data is preceded by a header. This
header identifies:
 Which sensor the sample comes from, using the sensor’s virtual sensor ID.
 When the sample was taken, using the sample’s timestamp.

Fig 22 shows the format the host receives each sample.

8-bit virtual
sensor ID

32-bit
timestamp

Sensor data

Fig 22. All sensor data transmitted to the host is preceded by a 5-byte header

The size and content of the actual sensor data depends on which sensor the data
belongs to. Different sensors have different data structures and different structure sizes.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 31 of 45

The structures for the generic header, the quaternion rotation vector, the orientation
sensor and raw accelerometer/gyroscope/magnetometer data are shown in Fig 23. For
structuring of the other sensors, please refer to the source code in file hostif_protocol.h.

Fig 23. Data structures for the generic header and several sensors

6.4 Real-world example
To get a better understanding of the interaction between the sensor hub and the host, a
schematic representation of what happens when the host enables a sensor is shown in
Fig 24.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 32 of 45

Fig 24. Interaction between the host, sensor hub, and sensors

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 33 of 45

7. Power optimization
Low power consumption is critical for a sensor hub solution because sensor hubs are
typically used to achieve always-on sensor processing. Therefore, the NXP SPM-S is a
power-optimized solution. This chapter discusses the common techniques to lower power
consumption on embedded systems, explains how these techniques are put in practice in
the SPM-S software, and provides power numbers measured on the SPM-S. This
chapter will only focus on the MCU power. Power optimization of the full system is
outside the scope of this application note.

7.1 Power-optimization techniques
The LPC54100 series is designed for low-power applications and offers many ways to
optimize the software to reduce the power consumption to a minimum. This section
explains several common techniques to lower the power consumption on microcontroller
and how these techniques are applied to the LPC54102 sensor hub firmware.

Before continuing on the specific optimization techniques, it is important to know the
difference between ‘static power’ and ‘dynamic power’. Static power is the power
consumed independent of the clock frequency, while dynamic power scales with the
operating frequency. Together, they make up the full power consumption of the chip:

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 × 𝑉

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐴 × 𝐶 × 𝑉2 × 𝐹

In which:
 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 is the static current consumption.
 𝑉 is the voltage used by the circuits on the chip (note this does not have to match the

chip’s external voltage supply, it may be converted down internally).
 𝐴 is the activity factor, which is the probability of a gate experiencing an energy-

consuming transition (low-to-high) in an arbitrary clock cycle.
 𝐶 is the capacitance being charged/discharged.
 𝐹 is the switching frequency.

From the above formulas it is clear that lowering the supply voltage results in a significant
decrease in total power consumption. This section continues on how software can be
optimized to reduce the power consumption.

7.1.1 Carefully choose which peripherals to enable when
The first step in power optimization is to enable the peripherals and blocks in the MCU
that are actually going to be used. Microcontrollers often have ways to disable the clock
to certain blocks (‘clock gating’) and disable the power to specific blocks (‘power gating’).
Clock gating will help reduce the dynamic power consumption while power gating will
help reduce the static power consumption as well.

Most blocks/peripherals are not actively used all the time, but only periodically. Usually
the power contribution of such peripherals is not significant, but in rare cases their power
contribution is significant, and it may be beneficial to disable the peripheral when it is not

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 34 of 45

being used. Often there is a time penalty associated with such schemes, for example, the
time for a PLL to lock after re-enabling the PLL again.

The energy saved using such schemes can be calculated using the following formula:

𝐸𝑠𝑎𝑣𝑒 = 𝑃𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 × 𝑡𝑜𝑓𝑓 − 𝑃𝑡𝑜𝑡𝑎𝑙 × 𝑡𝑝𝑒𝑛𝑎𝑙𝑡𝑦

Where:
 𝑃𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 is the power consumption of the peripheral.
 𝑡𝑜𝑓𝑓 is the time the peripheral will be off.
 𝑃𝑡𝑜𝑡𝑎𝑙 is the total power consumption of the chip while enabling the peripheral.
 𝑡𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is the time it takes to enable the peripheral and any required delay.

In the SPM-S firmware, all peripherals that are not used throughout the runtime are
clock-gated, and if possible, power gated at startup, thereby reducing both the static and
dynamic power consumption.

Some code sections are executed at high CPU speed using the PLL as main clock
source, while most code sections are executed at low speed, using the 12 MHz IRC as
main clock source. With the formula mentioned in the above paragraph, one can
calculate the power saved by turning the PLL off when it is not used:

𝐸𝑠𝑎𝑣𝑒 = 𝑃𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 × 𝑡𝑜𝑓𝑓 − 𝑃𝑡𝑜𝑡𝑎𝑙 × 𝑡𝑝𝑒𝑛𝑎𝑙𝑡𝑦

Assuming:
 𝑃𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 = 700 𝜇𝐴 × 1.8𝑉 = 1.26 𝑚𝑊 (PLL current times VDD voltage).
 𝑡𝑜𝑓𝑓 = 9 𝑚𝑠 (assuming 100 Hz 9-axis sensor fusion).

 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝐼 × 𝑉 = 1.9 𝑚𝐴 × 1.8𝑉 = 3.42 𝑚𝑊 (the total power consumption of the chip
while enabling the peripheral 2).

 𝑡𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 75 𝜇𝑠𝑒𝑐 (typical PLL lock time).

 𝐸𝑠𝑎𝑣𝑒 = 𝑃𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 × 𝑡𝑜𝑓𝑓 − 𝑃𝑡𝑜𝑡𝑎𝑙 × 𝑡𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =

1.26 𝑚𝑊 × 9 𝑚𝑠 − 3.42 𝑚𝑊 × 75 𝜇𝑠𝑒𝑐 = 11.34 𝜇𝐽 − 0.26 𝜇𝐽 = 11.08 𝜇𝐽

𝐸𝑠𝑎𝑣𝑒 can be converted to the average saved power consumption:

𝑃𝑠𝑎𝑣𝑒,𝑎𝑣𝑔 =
 𝐸𝑠𝑎𝑣𝑒

𝑇𝑝𝑒𝑟𝑖𝑜𝑑
=

11.08 𝜇𝐽

10 𝑚𝑠
= 1.11 𝑚𝑊

7.1.2 Choosing the right low-power mode
Microcontrollers usually offer several low-power (sleep) modes. These modes allow
power control in several steps, starting by shutting off the clock to the CPU, up to
powering down the whole chip except for a small ‘always-on’ power domain. In any of
these modes, the total power consumption of the chip is significantly lower than the
active power consumption. Significant power can be saved by spending as much time as
possible in any of the available low-power modes.
Deeper power modes have a lower power consumption, but usually at the cost of a
higher wake-up time and less available wake-up sources. This means the properties of
the low-power modes must be compared to the restrictions of the application (real-time
handling of events, wake-up sources) and the wake-up time should be in the right

2. 2 Assuming VDD is 1.8V and IDD is 1.9 mA (taken from LPC5410x datasheet, supply current while
executing CoreMark from flash at 12 MHz)

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 35 of 45

proportion of the saved power consumption. The time spent in the low-power mode is
similar to the 𝐸𝑠𝑎𝑣𝑒 formula in section 7.1.1.
The LPC54102 defines four reduced power modes:
 Sleep mode. The clock to the core is shut off. Peripherals and memories are active

and operational. Analog components can be turned on or off using use the
PDRUNCFG register.

 Deep-sleep mode. The clock to all CPUs is shut down and the peripherals receive no
internal clocks. All SRAM and registers maintain their internal states. The flash is in
stand-by mode to minimize wake-up time, and the IRC is turned off to save power.

 Power-down mode. Same as deep-sleep mode, but the flash is now also powered
down to conserve power at the expense of a somewhat longer wake-up time.

 Deep power-down mode. The entire system (CPUs and all peripherals) is shut down
except for the PMU and the RTC. On wake-up, the part reboots.

Though deep-sleep, power-down, and deep power-down modes define which analog
components are turned on or off, this can always be overwritten when entering these
modes through the power profile API. This API allows the application code to specify
which analog components must remain on while in the specified low-power mode.

The power manager of the SPM-S framework has a single function to enter a low-power
state, ResMgr_EnterPowerDownMode(). The function takes a single parameter, which is
the estimated time to spend in the low-power mode. Depending on this parameter, the
LPC54102 enters into either sleep mode or power-down mode:
 If the estimated sleep time is shorter than 400 µsec, the LPC54102 enters into

regular sleep mode.
 If the estimated sleep time is longer than 400 µsec, the LPC54102 enters into power-

down mode.

This assures the selection of the power mode that will result in the largest power saving.
If the estimated sleep time is for a short period (< 400 µsec), the lower power
consumption of the power-down mode will not weigh up against its longer wake-up time.

During power-down mode, the watchdog timer remains enabled as this low-power timer
is used for time-stamping. Also SRAM0 is configured to be retained during power down.

Before entering the low power mode, another power API is used to configure the internal
voltage regulator to its lowest setting.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 36 of 45

Fig 25. Function ResMgr_EnterPowerDownMode() takes care of entering the most lower
power mode when the SPM-S firmware is idle

7.1.3 Dynamic frequency scaling
Besides choosing the right low-power mode, the software should also maximize the time
spent in the low-power mode, by decreasing the time spend in active mode.

For certain tasks, such as algorithm execution, this can easily be done by increasing the
CPU frequency. For these kind of tasks, instead of running at a fast-enough frequency to
support the real-time needs, running at a higher frequency will:
 Reduce the time spent in active mode and increase the time spent in the low-power

mode. The low-power mode significantly reduces both the static and dynamic power
consumption compared to the power consumption in active mode, resulting in a
lower average power consumption.

 In general, result in a lower current consumption per MHz (µA/MHz) while in active
mode. By definition, the static power consumption is not (directly) impacted by the
frequency. Since the dynamic power consumption scales linearly with the frequency
and the static power consumption remains the same, the µA/MHz will decrease when
increasing the frequency, as the constant static current consumption will get divided
by a higher frequency. Note that though a higher frequency does not impact the

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 37 of 45

static current consumption directly, there usually is an increase in static and dynamic
power, as the CPU often requires a higher voltage when running at higher
frequencies. Also many MCUs rely on PLLs to increase the oscillator’s frequency to a
higher frequency, which consumes significant power when enabled. The µA/MHz
profile of the LPC54102 is shown in Fig 26.

For such tasks it is beneficial to run the CPU at high core frequency.

Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals disabled; BOD disabled;
Prefetch disabled in FLASHCFG register. System clock flash access time set by power API.
SRAM0 powered, SRAM1 and SRAM2 powered down. Measured with Keil uVision 5.12.
Optimization level 0, optimized for time off.
12 MHz: IRC enabled; PLL disabled. 24 MHz - 100 MHz: IRC enabled; PLL enabled.

Fig 26. µA/MHz profile of the LPC54102 running CoreMark

However, for other tasks, increasing the CPU frequency does not affect the execution
time of that task because the execution relies on external, real-time events. An example
of this would be the sensor hub’s host interface task; the speed of the interface and the
number of bytes to transfer dictates the execution time and increasing the CPU speed
does not decrease the execution time. For such tasks it is best to choose the most low-
power clock source (example, internal oscillator with no PLL) and run at the slowest
speed possible that will still guarantee enough performance without delaying the task any
further

By dynamically scaling the frequency for each task, significant power can be saved; time
spent in low-power mode is maximized without unnecessary wasting of CPU cycles (thus
power).

The SPM-S firmware has implemented dynamic frequency scaling:

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 38 of 45

 For all interrupts and ‘housekeeping’ tasks, the CPU is clocked from the 12 MHz IRC
oscillator. These tasks are short by nature, or slowed down by external events (for
example, sensor I2C bus, or host interface bus). Running at a higher frequency does
not significantly reduce the execution time, but would result in higher power
consumption.

 For the sensor fusion algorithm, the CPU is clocked from the PLL, which has been
configured to output a frequency of 84 MHz (sweet spot for LPC54102, see Fig 26).
By executing this task at the most power efficient configuration (lowest µA/MHz), the
task consumes the least amount of energy and the time spent in low-power mode is
maximized.

Besides the dynamic frequency scaling, the internal voltage regulator of the LPC54102 is
also dynamically scaled, minimizing the dynamic power and static current.

7.1.4 Software architecture
A solid (interrupt-driven) architecture can help achieve simple and effective power
management:
 All interrupt handlers should be as short as possible, and only do the bare minimum

required. For any significant processing, it is best to defer this to the main loop.
 For every iteration of the main loop, the MCU checks if work (deferred from the IRQ

handlers) needs to be done. As soon as there are no tasks left in the main loop, the
low-power mode is entered.

 Since no code in the interrupt handlers should benefit significantly from a faster CPU
clock (since the IRQ handlers are short), all power management and clock switching
can be done from the main loop.

The SPM-S framework has been designed on this architecture, resulting in simple and
effective power management.

7.2 SPM-S power measurements
Fig 27 and Fig 28 show power plots of the LPC54102 running the SPM-S firmware.
Conditions:
 LPCXpresso54102 with sensor board.
 SPM-S connected to PC using the debug probe USB connector.

 Teapot executable on the PC is acting as host for the sensor hub and active (i.e.
reading data when nIRQ is asserted). The application has previously enabled the
rotation vector sensor at 100 Hz rate.

 Power is measured using a Monsoon Power Monitor. Voltage is configured at 2.01V
(lowest output voltage supported).

 Monsoon Power Monitor is connected to LPC54102 VDD pins, JP4.2 on the
LPCXpresso54102 board (see Fig 29). Solder jumper JS6 is modified to be open.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 39 of 45

Fig 27 shows the power over a period of 500ms. The peaks in the plot are caused by the
execution of the sensor fusion algorithm at 84 MHz CPU clock.

Fig 28 shows the power over a shorter period of 40 ms. For 100 Hz sensor fusion, this
means four iterations of sampling the sensors, processing the data, and transferring the
data to the host, The power modes can be clearly distinguished in the plot:
 The peaks (~25 mW) are caused by the execution of the sensor fusion algorithm at

84 MHz CPU clock.
 The lower peaks (~5 mW) are mainly the moments when the sensors are being

sampled and when the data is transferred to the host.
 The near-zero power is measured when the LPC54102 is in power-down mode.

Fig 27. Power consumption of SPM-S running 100 Hz 9-axis sensor fusion. Average
power consumption is 2.58 mW

Fig 28. Detailed view of 4 iterations of the sensor sampling, sensor fusion and host
interface transfer.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 40 of 45

Fig 29. Snippet of LPCXpresso54102 board schematic. For the power measurements
JS6 is opened and power is supplied using a Monsoon Power Monitor on JP4.2

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 41 of 45

8. Conclusion
The LPC54100 series are high performance, yet low-power dual-core ARM Cortex-
M4/M0+ microcontrollers. Typical applications include low-power sensor hubs in mobile
handsets and tablets, portable health and fitness monitoring devices, home and building
automation products, robotics and flying drones/quadcopters.

The Sensor Processing/Motion Solution (SPM-S) showcases the LPC54102 in a typical
sensor-hub application; the microcontroller can collect samples from various sensors,
process the data using sensor fusion algorithms, and send the processed data to the
host over the host interface.

Power-optimized source code for the microcontroller, a pre-compiled Bosch Sensortec
BSXlite Sensor Fusion library, and a Windows based host-side application are freely
available, allowing developers to quickly develop low power, always-on sensor-
processing applications using the LPC54100 series.

E
rror!

U
nknow

n docum
e

nt
property
nam

e.

Error! U
nknow

n docum
ent property nam

e.
E

rror! U
nknow

n docum
ent property

nam
e.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 20154. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 42 of 45

9. Legal information

9.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

9.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 43 of 45

10. List of figures

Fig 1. Block diagram of an LPC54100-based sensor
hub .. 4

Fig 2. Sensor fusion applied to motion sensors 5
Fig 3. Sensor Processing-Motion boards

(LPCXpresso54102 board with sensor shield)
(OM13078) .. 6

Fig 4. Sample application showing a teapot, the
orientation of the teapot is based on the
orientation of the board 6

Fig 5. Architecture of a typical sensor-hub based
device ... 8

Fig 6. SPM-S hardware block diagram. Shaded
components not used by the demo 10

Fig 7. SPM-S software block diagram 11
Fig 8. Simplified software flow diagram of the SPM-S

firmware .. 13
Fig 9. SPM-S software stack 14
Fig 10. Source code directory structure 15
Fig 11. Simplified flow chart of the sensor sampling

process ... 17
Fig 12. The physical sensor structure and function-

pointer table for the Bosch accelerometer.
Driver is applicable to both BMC150 and
BMI055, BMC150 is selected by I2C slave
address by demo software 18

Fig 13. Unique sensor ID of each physical sensor 19
Fig 14. Array g_phySensors 19
Fig 15. The SensorMap array defines which physical

sensors are being used by a specific virtual
sensor ... 20

Fig 16. Code snippet of the Algorithm_Process()
function ... 21

Fig 17. Code snippet of BSXlite initialization 24
Fig 18. Code listing for (re)storing the magnetometer

calibration profile ... 26
Fig 19. Block diagram of the host interface hardware . 27
Fig 20. Simplified signal timing diagram of host sending

command and receiving response 28
Fig 21. Simplified signal timing diagram of sensor hub

sending sensor data .. 28
Fig 22. All sensor data transmitted to the host is

preceded by a 5-byte header 30
Fig 23. Data structures for the generic header and

several sensors ... 31
Fig 24. Interaction between the host, sensor hub, and

sensors ... 32

Fig 25. Function ResMgr_EnterPowerDownMode()
takes care of entering the most lower power
mode when the SPM-S firmware is idle........... 36

Fig 26. µA/MHz profile of the LPC54102 running
CoreMark .. 37

Fig 27. Power consumption of SPM-S running 100 Hz
9-axis sensor fusion. Average power
consumption is 2.58 mW 39

Fig 28. Detailed view of 4 iterations of the sensor
sampling, sensor fusion and host interface
transfer. ... 39

Fig 29. Snippet of LPCXpresso54102 board schematic.
For the power measurements JS6 is opened
and power is supplied using a Monsoon Power
Monitor on JP4.2 ... 40

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

AN11703 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 1.0 — 29 June 2015 44 of 45

11. List of tables

Table 1. Sensors used by the SPM-S demo 11
Table 2. Overview of differences between BSX and

BSXlite .. 22
Table 3. Differences between BSX and BSXlite with

regard to library output 23
Table 4. BSXlite output ‘get’ functions 25

NXP Semiconductors AN11703
 LPC5410x Sensor Processing-Motion Solution

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP Semiconductors N.V. 2015. All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 29 June 2015
Document identifier: AN11703

12. Contents

1. Introduction ... 3
1.1 Sensor hubs and sensor fusion: Overview 3
1.1.1 Sensor hubs ... 3
1.1.2 Sensor Fusion .. 4
1.2 Sensor Processing-Motion Solution 5
1.3 Typical applications .. 7
2. SPM-S system overview 8
2.1 Sensor hub architecture 8
2.1.1 Application Processor .. 8
2.1.2 Sensor hub ... 9
2.1.3 Host interface ... 9
2.1.4 Sensors .. 9
2.2 SPM-S Architecture .. 9
2.2.1 Hardware Architecture 10
2.2.2 Software Architecture 11
2.2.3 Virtual Sensors and Physical Sensors 12
3. SPM-S Software Overview 13
3.1 Software flow .. 13
3.2 Software stack .. 14
3.3 Source code and directory structure 15
4. SPM-S Sensor Data Acquisition 16
4.1 Basics .. 16
4.2 Generic sensor driver interface 17
4.3 Tying-in the sensor driver 18
4.3.1 Unique physical sensor ID................................ 19
4.3.2 g_phySensors array ... 19
4.3.3 SensorMap array .. 19
4.3.4 Algorithm_Process() function 20
5. Bosch BSXlite Sensor Fusion 22
5.1 BSXlite overview .. 22
5.2 BSXlite vs. BSX .. 22
5.3 Using BSXlite ... 23
5.3.1 BSXlite initialization .. 23
5.3.2 Executing the sensor fusion 24
5.3.3 Get outputs from the library 25
5.3.4 Calibration profiles ... 25

6. SPM-S Host Interface .. 27
6.1 Basics ... 27
6.2 Physical layer ... 27
6.3 Protocol .. 27
6.3.1 Commands, parameters, and responses.......... 28
6.3.2 Sensor data .. 30
6.4 Real-world example .. 31
7. Power optimization .. 33
7.1 Power-optimization techniques 33
7.1.1 Carefully choose which peripherals to enable

when ... 33
7.1.2 Choosing the right low-power mode 34
7.1.3 Dynamic frequency scaling 36
7.1.4 Software architecture 38
7.2 SPM-S power measurements 38
8. Conclusion ... 41
9. Legal information .. 42
9.1 Definitions ... 42
9.2 Disclaimers ... 42
10. List of figures ... 43
11. List of tables .. 44
12. Contents ... 45

	1. Introduction
	1.1 Sensor hubs and sensor fusion: Overview
	1.1.1 Sensor hubs
	1.1.2 Sensor Fusion

	1.2 Sensor Processing-Motion Solution
	1.3 Typical applications

	2. SPM-S system overview
	2.1 Sensor hub architecture
	2.1.1 Application Processor
	2.1.2 Sensor hub
	2.1.3 Host interface
	2.1.4 Sensors

	2.2 SPM-S Architecture
	2.2.1 Hardware Architecture
	2.2.2 Software Architecture
	2.2.3 Virtual Sensors and Physical Sensors

	3. SPM-S Software Overview
	3.1 Software flow
	3.2 Software stack
	3.3 Source code and directory structure

	4. SPM-S Sensor Data Acquisition
	4.1 Basics
	4.2 Generic sensor driver interface
	4.3 Tying-in the sensor driver
	4.3.1 Unique physical sensor ID
	4.3.2 g_phySensors array
	4.3.3 SensorMap array
	4.3.4 Algorithm_Process() function

	4.4

	5. Bosch BSXlite Sensor Fusion
	5.1 BSXlite overview
	5.2 BSXlite vs. BSX
	5.3 Using BSXlite
	5.3.1 BSXlite initialization
	5.3.2 Executing the sensor fusion
	5.3.3 Get outputs from the library
	5.3.4 Calibration profiles

	6. SPM-S Host Interface
	6.1 Basics
	6.2 Physical layer
	6.3 Protocol
	6.3.1 Commands, parameters, and responses
	6.3.2 Sensor data

	6.4 Real-world example

	7. Power optimization
	7.1 Power-optimization techniques
	7.1.1 Carefully choose which peripherals to enable when
	7.1.2 Choosing the right low-power mode
	7.1.3 Dynamic frequency scaling
	7.1.4 Software architecture

	7.2 SPM-S power measurements

	8. Conclusion
	9. Legal information
	9.1 Definitions
	9.2 Disclaimers

	10. List of figures
	11. List of tables
	12. Contents

